662
Z.-Z. Zhou et al. / Inorganic Chemistry Communications 14 (2011) 659–662
[16] S. Würtz, F. Glorius, Acc. Chem. Res. 41 (2008) 1523–1533.
[17] C. Mazet, L.H. Gade, Organometallics 20 (2001) 4144–4146.
[18] D.-H. Lee, Y.H. Lee, D.I. Kim, Y. Kim, W.T. Lim, J.M. Harrowfield, P. Thuéry, M.-J. Jin,
Y.C. Park, I.-M. Lee, Tetrahedron 64 (2008) 7178–7182.
[43] R.-C. Yu, C.-H. Hung, J.-H. Huang, H.-Y. Lee, J.-T. Chen, Inorg. Chem. 41 (2002)
6450–6455.
[44] B. Al-Saleh, M.A. EI-Apasery, R.S. Abdel-Aziz, M.H. Elnagdi, J. Heterocycl. Chem. 42
(2005) 563–566.
[19] P.R. Kumar, S. Upreti, A.K. Singh, Polyhderon 27 (2008) 1610–1622.
[20] S.A. Patil, C.-M. Weng, P.-C. Huang, F.-E. Hong, Tetrahedron 65 (2009) 2889–2897.
[21] G.A. Grasa, A.C. Hillier, S.P. Nolan, Org. Lett. 3 (2001) 1077–1080.
[22] C. Nájera, J. Gil-Moltό, S. Karlström, L.R. Falvello, Org. Lett. 5 (2003) 1451–1454.
[23] D. Domin, D. Benito-Garagorri, K. Mereiter, J. Fröhlich, K. Kirchner, Organome-
tallics 24 (2005) 3957–3965.
[24] S. Mohanty, B. Punji, M.S. Balakrishna, Polyhedron 25 (2006) 815–820.
[25] S. Li, Y. Lin, J. Cao, S. Zhang, J. Org. Chem. 72 (2007) 4067–4072.
[26] J.M. Chitanda, D.E. Prokopchuk, J.W. Quail, S.R. Foley, Organometallics 27 (2008)
2337–2345.
[27] A. Bermejo, A. Ros, R. Fernández, J.M. Lassaletta, J. Am. Chem. Soc. 130 (2008)
15798–15799.
[28] J. Yorke, C. Dent, A. Decken, A. Xia, Inorg. Chem. Commun. 13 (2010) 54–57.
[29] S. Gülcemal, İ. Kani, F. Yılmaz, B. Çetinkaya, Tetrahedron 66 (2010) 5602–5606.
[30] D. Mingji, B. Liang, C. Wang, Z. You, J. Xiang, G. Dong, J. Chen, Z. Yang, Adv. Synth.
Catal. 346 (2004) 1669–1673.
[45] K. Chanda, M.C. Dutta, E. Karim, J.N. Vishwakarma, J. Heterocycl. Chem. 41 (2004)
627–631.
[46] Y. Li, L. Tang, Y. Duan, X. Chen, Y. Li, J. Liu, G. Zhang, CN Pat. 1850869.
[47] G.D. Scott, US Pat. 2009163545.
[48] J. Deng, D. Shen, Z. Zhou, Acta Cryst. E66 (2010) o2.
[49] The β-ketoamine ligands L1–3 were synthesized by the following procedures. A
solution of enaminone (10 mmol) and the related substituted aniline (12 mmol)
were dissolved in ethanol (20 ml), with the formic acid as catalyst. The mixture
was heated under reflux for 6 hours. As for L4–5, the reaction carried out in the
presence of 20 ml glacial acetic acid instead of ethanol. After recrystallization from
the methanol, the crystals were obtained. L1–2 have been well characterized by
the literatures, however, the analysis data of L3 and L5 was absent. L3: yellow
crystals in 92% yield; 1H NMR (CDCl3, 500 MHz): 12.11 (d, J= 12.6 Hz, 1H, NH),
7.92 (d, J= 8.4 Hz, 2H, Ar-H), 7.40 (m, 1H, CH=), 7.02 (m, 2H, Ar-H), 6.95 (m, 2H,
Ar-H), 6.89 (m, 2H, Ar-H), 5.94 (d, J= 10 Hz, 1H, CH=), 3.81 (s, 3H, OCH3), 3.80 (s,
3H, OCH3).13C NMR (CDCl3, 125 MHz): 189.65, 162.33, 156.20, 145.27, 134.01,
132.11, 129.21, 117.76, 114.99, 113.62, 92.61, 55.89, 55.39. Anal. Calc. for
[31] W. Chen, R. Li, B. Han, B.-J. Li, Y.-C. Chen, Y. Wu, L.-S. Ding, D. Yang, Eur. J. Org.
Chem. (2006) 1177–1184.
C
17H17NO3: C, 72.07; H, 6.05; N, 4.94. Found: C, 71.95; H, 6.10; N, 4.87. L4:
[32] X. Guo, J. Zhou, X. Li, H. Sun, J. Organomet. Chem. 693 (2008) 3692–3696.
[33] D.F. Brayton, T.M. Larkin, D.A. Vicic, O. Navarro, J. Organomet. Chem. 694 (2009)
3008–3011.
[34] J. Cui, M. Zhang, Y. Wang, Z. Li, Inorg. Chem. Commun. 12 (2009) 839–841.
[35] J. Cui, M. Zhang, Y. Zhan, Inorg. Chem. Commun. 13 (2010) 81–85.
[36] Y.-Y. Peng, J. Liu, X. Lei, Z. Yin, Green Chem. 12 (2010) 1072–1075.
[37] A. Kilic, D. Kilinc, E. Tas, I. Yilmaz, M. Durgun, I. Ozdemir, S. Yasar, J. Organomet.
Chem. 695 (2010) 697–706.
[38] Y.-C. Lai, H.-Y. Chen, W.-C. Hung, C.-C. Lin, F.-E. Hong, Tetrahedron 61 (2005)
9484–9489.
[39] D.-H. Lee, J.-Y. Jung, I.-M. Lee, M.-J. Jin, Eur. J. Org. Chem. (2008) 356–360.
[40] D.-H. Lee, M. Choi, B.-W. Yu, R. Ryoo, A. Taher, S. Hossain, M.-J. Jin, Adv. Synth.
Catal. 351 (2009) 2912–2920.
flavo-green crystals in 73% yield; 1H NMR (CDCl3, 500 MHz): 12.22 (d, J=12 Hz,
1H, NH), 7.94 (d, J=9 Hz, 2H, Ar-H), 7.55 (m, 1H, CH=), 7.39 (m, 2H, Ar-H), 7.29
(m, H, Ar-H), 7.15 (m, 2H, Ar-H), 7.14 (m, 2H, Ar-H), 7.00-6.90 (m, 4H, Ar-H), 6.05
(d, J= 9 Hz, 1H, CH=), 3.89 (s, 3H, OCH3).13C NMR (CDCl3, 125 MHz): 190.12,
162.59, 156.69, 146.46, 143.15, 132.34, 132.30, 130.00, 129.63, 124.09, 124.03,
123.32, 119.51, 118.86, 114.52, 113.76, 94.58, 55.58. Anal. Calc. For C22H19NO3: C,
76.50; H, 5.54; N, 4.06; Found: C, 76.34; H, 5.62; N, 4.01. L5: yellow crystals in 61%
yield; 1H NMR (CDCl3, 500 MHz): 12.24 (d, J=12 Hz, 1H, NH), 8.24 (d, J=7 Hz, 2H,
Ar-H), 7.95 (m, 1H, CH=), 7.48 (m, 2H, Ar-H), 7.13 (m, 2H, Ar-H), 6.97 (m, 2H, Ar-
H), 6.16 (d, J=8 Hz, 1H, CH=), 3.89 (s, 3H, OCH3).13C NMR (CDCl3, 125 MHz):
191.45, 162.67, 145.50, 142.16, 141.13, 130.74, 129.27, 129.27, 125.61, 114.57,
113.40, 96.34, 55.01. Anal. Calc. For C16H14N2O4: C, 64.42; H, 4.73; N, 9.39; Found:
C, 64.35; H, 4.64; N, 9.33.
[41] M.-J. Jin, D.-H. Lee, Angew. Chem. Int. Ed. 49 (2010) 1119–1122.
[42] X.-H. He, Y.-Z. Yao, J.-K. Zhang, Y.-H. Liu, L. Zhang, Q. Wu, Organometallics 22
(2003) 4952–4957.
[50] C.-J. Li, Chem. Rev. 105 (2005) 3095–3166.
[51] S.W. Kim, J.N. Park, Y.J. Jang, Y.H. Chung, S.J.H. Wang, T. Hyeon, Nano Lett. 3 (2003)
1289–1291.