PAPER
Synthesis of the C14–C28 Fragment of Tetronasin
3223
13C NMR (125 MHz, C6D6): d = 240.1 (C=O), 239.0 (C=O), 136.6–
128.0 (12 × C), 92.3 (5 × C, Cp), 85.0 (CH), 79.3 (CH), 69.7 (CH),
66.2 (CH2), 64.1 (CH), 58.7 (CH), 35.7 (CH2), 33.6 (CH2), 31.4
(CH), 27.2 (3 × CH3), 20.9 (CH3), 19.7 (C), 17.7 (CH3).
(Charnwood) for generous financial support. We also thank Profes-
sor Yoshii for NMR spectra of (23R)-27.
References
Synthesis of (23S)-5
(1) Davies, D. H.; Snape, E. W.; Suter, P. J.; King, T. J.;
Falshaw, C. P. J. Chem. Soc., Chem. Commun. 1981, 1073.
(2) Keller-Julsen, C.; King, H. D.; Kuhn, M.; Loosli, H. R.;
Pache, W.; Petcher, T. J.; Weber, H. P.; von Wartburg, A. J.
Antibiot. 1982, 35, 142.
(3) Newbold, C. J.; Wallace, R. J.; Watt, N. D.; Richardson, A.
J. Appl. Environ. Microbiol. 1988, 54, 544.
(4) Gates, R. N.; Roland, L. T.; Wyatt, W. E.; Hembry, F. G.;
Bailie, J. H. J. Anim. Sci. 1989, 67, 3419.
The stannane (23S)-21 was distilled twice using a kugelrohr appa-
ratus (240 °C, 0.2 mm Hg) immediately prior to use. A solution of
the stannane (23S)-21 (160 mg, 0.37 mmol) in THF (3 mL) was
cooled to –78 °C and n-BuLi (0.40 mL, 1.1 M, 0.44 mmol) was add-
ed dropwise. After 20 min, a solution of CuBr·SMe2 (91 mg, 0.44
mmol) in a mixture of THF (1.0 mL) and (i-Pr)2S (0.4 mL) was add-
ed dropwise and the reaction was stirred at –78 °C for 1 h. To a so-
lution of the neutral complex 14 (176 mg, 0.28 mmol) in freshly
distilled 1,2-dimethoxyethane (3 mL) was added NOPF6 (64 mg,
0.36 mmol) at 0 °C. After stirring the reaction at 0 °C for 15 min,
the reaction was cooled to –10 °C and then added dropwise via can-
nula to the solution of organocopper (23S)-23. The reaction was
stirred at –78 °C for 3 h and then quenched by the addition of
NH4OH–sat. NH4Cl solution (10 mL/10 mL). The reaction was di-
luted with Et2O (20 mL) then stirred for 30 min before extraction of
the aqueous layer with Et2O. The combined organic layers were
washed with brine, dried (MgSO4), filtered and concentrated in vac-
uo. The residue was dissolved in CHCl3 (10 mL) and oxygen was
bubbled through the solution for 2 d. The solvent was removed in
vacuo and the residue was purified using chromatography, eluting
with Et2O–hexane (1:10) to give (23S)-5 as a colourless oil (28 mg,
0.049 mmol, 18%); [a]D –38.2 (c = 0.65, CHCl3).
1H NMR (500 MHz, CDCl3): d = 7.78–7.70 (m, 4 H), 7.44–7.35 (m,
6 H), 5.68 (ddd, J = 0.9, 8.1, 15.8 Hz, 1 H), 5.55 (dd, J = 5.6, 15.8
Hz, 1 H), 3.86–3.74 (m, 4 H), 3.38 (s, 3 H), 3.30–3.21 (m, 2 H), 3.05
(ddd, J = 2.6, 4.3, 9.8 Hz, 1 H), 2.27 (app. sext, J = 6.8 Hz, 1 H),
2.08–2.00 (m, 1 H), 1.95 (ddd, J = 6.8, 8.6, 12.4 Hz, 1 H), 1.80 (dq,
J = 3.9, 12.8 Hz, 1 H), 1.70–1.60 (m, 2 H), 1.54 (ddd, J = 6.0, 7.3,
12.8 Hz, 1 H), 1.45–1.34 (m, 1 H), 1.29–1.17 (m, 1 H), 1.16 (d, J =
6.4 Hz, 3 H), 1.08 (d, J = 6.4 Hz, 3 H), 1.06 (s, 9 H), 0.99 (d, J = 6.8
Hz, 3 H), 0.82 (d, J = 6.4 Hz, 3 H).
(5) Hori, K.; Hikage, N.; Inagaki, A.; Mori, S.; Nomura, K.;
Yoshii, E. J. Org. Chem. 1992, 57, 2888.
(6) Hori, K.; Kazuno, H.; Nomura, K.; Yoshii, E. Tetrahedron
Lett. 1993, 34, 2183.
(7) Hori, K.; Mori, S.; Nomura, K.; Inagaki, A.; Yoshii, E.
Chem. Pharm. Bull. 1990, 38, 1784.
(8) Hori, K.; Nomura, K.; Kazuno, H.; Yoshii, E. Chem. Pharm.
Bull. 1990, 38, 1778.
(9) Ley, S. V.; Clase, J. A.; Mansfield, D. J.; Osborn, H. M. I. J.
Heterocycl. Chem. 1996, 33, 1533.
(10) De Laszlo, S. E.; Ford, M. J.; Ley, S. V.; Maw, G. N.
Tetrahedron Lett. 1990, 31, 5525.
(11) Ley, S. V.; Brown, D. S.; Clase, J. A.; Fairbanks, A. J.;
Lennon, I. C.; Osborn, H. M. I.; Stokes, E. S. E.; Wadsworth,
D. J. J. Chem. Soc., Perkin Trans. 1 1998, 2259.
(12) Ley, S. V.; Wadsworth, D. J. Tetrahedron Lett. 1989, 30,
1001.
(13) Ley, S. V.; Trudell, M. L.; Wadsworth, D. J. Tetrahedron
1991, 47, 8285.
(14) Semmelhack, M. F.; Kim, C. R.; Dobler, W.; Meier, M.
Tetrahedron Lett. 1989, 30, 4925.
(15) Semmelhack, M. F.; Epa, W. R.; Cheung, A. W.-H.; Gu, Y.;
Kim, C.; Zhang, N.; Lew, W. J. Am. Chem. Soc. 1994, 116,
7455.
(16) Lee, H. W.; Lee, I. Y. C.; Kim, S. K. Tetrahedron Lett. 1990,
31, 7637.
13C NMR (125 MHz, CDCl3): d = 135.8, 135.7, 134.1, 134.0, 129.4,
127.5 (12 × C), 132.9 (CH), 131.5 (CH), 90.0 (CH), 84.1 (CH), 80.8
(CH), 79.1 (CH), 77.8 (CH), 65.6 (CH2), 57.1 (CH3), 41.3 (CH),
36.1 (CH2), 35.4 (CH), 32.8 (CH2), 32.5 (CH2), 31.3 (CH), 26.8 (3
× CH3), 19.4 (C), 19.1 (CH3), 17.6 (CH3), 16.5 (CH3), 15.8 (CH3).
(17) Lee, H. W.; Lee, I. Y. C. Synlett 1991, 871.
(18) Hill, R. K.; Foley, P. J.; Gardella, L. A. J. Org. Chem. 1967,
32, 2330.
(19) Wolinsky, J.; Chan, D. J. Org. Chem. 1965, 30, 41.
(20) Kraus, G. A.; Molina, M. T. J. Org. Chem. 1988, 53, 752.
(21) Kraus, G. A.; Frazier, K. A.; Roth, B. D.; Taschner, M. J.;
Neuenschwander, K. J. Org. Chem. 1981, 46, 2417.
(22) Cooksey, J.; Gunn, A.; Kocienski, P. J.; Kuhl, A.; Uppal, S.;
Christopher, J. A.; Bell, R. Org. Biomol. Chem. 2004, 2,
1719.
(23) Kolb, H. C.; Van Nieuwenhze, M. S.; Sharpless, K. B.
Chem. Rev. 1994, 94, 2483.
(24) Mitsunobu, O. Synthesis 1981, 1.
(25) Hughes, D. L. Org. React. (N.Y.) 1992, 42, 335.
(26) The five- and six-membered lactones were easily
distinguished by their characteristic 13C NMR signals for the
C=O groups at d = 178.1 and 171.2, respectively.
(27) Cohen, T.; Lin, M.-T. J. Am. Chem. Soc. 1984, 106, 1130.
(28) Cohen, T.; Bhupathy, M. Acc. Chem. Res. 1989, 22, 152.
(29) Rychnovsky, S. D.; Plzak, K.; Pickering, D. Tetrahedron
Lett. 1994, 35, 6799.
Spectroscopic Data for (23R)-5
[a]D –53.3 (c = 0.15, CHCl3).
1H NMR (500 MHz, CDCl3): d = 7.78–7.70 (m, 4 H), 7.45–7.35 (m,
6 H), 5.83 (ddd, J = 1.3, 6.8, 16.2 Hz, 1 H), 5.60 (ddd, J = 0.9, 5.6,
15.8 Hz, 1 H), 3.96 (ddd, J = 5.1, 6.8, 8.6 Hz, 1 H), 3.86–3.75 (m, 3
H), 3.55 (dd, J = 3.8, 9.0 Hz, 1 H), 3.36 (s, 3 H), 3.33 (qd, J = 1.3,
5.1 Hz, 1 H), 3.05 (ddd, J = 2.6, 4.3, 9.4 Hz, 1 H), 2.31–2.24 (m, 2
H), 1.97 (ddd, J = 6.4, 8.5, 12.4 Hz, 1 H), 1.78 (dq, J = 3.0, 12.8 Hz,
1 H), 1.68 (ddd, J = 1.7, 6.8, 12.4 Hz, 1 H), 1.66–1.60 (m, 2 H),
1.44–1.36 (m, 1 H), 1.26–1.18 (m, 1 H), 1.09 (d, J = 6.4 Hz, 3 H),
1.06 (s, 9 H), 0.99 (d, J = 6.8 Hz, 3 H), 0.95 (d, J = 7.3 Hz, 3 H),
0.81 (d, J = 6.8 Hz, 3 H).
13C NMR (125 MHz, CDCl3): d = 135.8, 135.7, 129.4, 127.5, 127.4
(12 × C, Ph), 134.0 (CH), 130.3 (CH), 85.9 (CH), 84.0 (CH), 80.2
(CH), 79.5 (CH), 78.0 (CH), 65.7 (CH2), 57.4 (CH3), 36.7 (CH),
35.3 (CH, CH2), 32.8 (CH2), 32.3 (CH2), 31.3 (CH), 26.8 (3 × CH3),
19.3 (C), 17.6 (CH3), 16.6 (CH3), 16.0 (CH3), 13.6 (CH3).
(30) Christopher, J. A.; Kocienski, P.; Procter, M. Synlett 1998,
425.
Acknowledgment
(31) Freeman, P. K.; Hutchinson, L. L. J. Org. Chem. 1980, 45,
1924.
We would like to thank the Engineering and Physical Sciences Re-
search Council, FCAR (Quebec), and AstraZeneca Pharmaceuticals
Synthesis 2005, No. 19, 3219–3224 © Thieme Stuttgart · New York