S. C. Holmes, M. J. Gait
FULL PAPER
Synthesis of 5Ј-Dimethoxytrityl-6-methyl-N4-[2-(trifluoroacetylam-
ino)ethyl]-2Ј-deoxycytidine (28): The starting nucleoside 27 (850 mg;
2.18 mmol) was dried by repeated co-evaporation form anhydrous
pyridine (3×20 mL) before being dissolved in a further portion of
the solvent (10 mL). Dimethoxytrityl chloride (811 mg; 2.40 mmol;
1.1 equiv.) was added and the reaction mixture stirred under argon
at room temperature overnight. The reaction was quenched by the
addition of anhydrous methanol (1 mL) and concentrated to an oil
under vacuum. After taking the oil up in DCM (50 mL) it was
washed with saturated NaHCO3 solution and brine. The organics
were dried with sodium sulfate and then concentrated to a foam.
Purification was performed by silica gel flash column chromatog-
raphy eluting with a gradient of 0–4% methanol in DCM (1.35 g;
1.95 mmol; 89%). 1H NMR (300 MHz, DMSO, 25 °C): δ = 9.83
(br., 1 H, NHCOCF3), 7.43–7.40, 7.28–7.19, 6.8–6.77 (m, 13 H,
Ar–H), 6.19 (m, 1 H, H-1Ј), 5.52 (s, 1 H, H-5), 4.62 (m, 1 H, H-
4Ј), 3.94 (m, 1 H, H-3Ј), 3.77 (s, 6 H, 2×OCH3), 3.53–3.47 (m, 2
H, 2×H-5Ј), 3.23–3.14, 2.71–2.68 (m, 4 H, NHCH2CH2), 2.19 (s,
3 H, 6-CH3), 1.92 (m, 2 H, 2×H-2Ј) ppm. MS (ES+): m/z = 683
[MH+], 492, 436, 303, 242, 150, 102. HRMS = m/z calculated for
C35H38F3N4O7 [MH+], 683.2720, found 683.2722. TLC (DCM/
methanol, 19:1): Rf = 0.25.
[15]
[16]
K. Ushijima, H. Gouzo, K. Hosono, M. Shirakawa, K. Kagos-
ima, K. Takai, H. Takaku, Biochimica Biophysica Acta 1998,
1379, 217–223.
a) N. G. Beloglazova, V. V. Sil’nikov, M. A. Zenkova, V. V.
Vlassov, FEBS Lett. 2000, 481, 277–280; b) N. G. Beloglazova,
A. Y. Epanchintsev, V. V. Sil’nikov, M. A. Zenkova, V. V. Vlas-
sov, Mol. Biol. 2002, 36, 581–588; c) N. G. Beloglazova, M. M.
Fabani, M. A. Zenkova, E. V. Bichenkova, N. N. Polushin, V. V.
Sil’nikov, K. T. Douglas, V. V. Vlassov, Nucleic Acids Res. 2004,
32, 3887–3897.
a) M. A. Podyminogin, V. V. Vlassov, R. Giege, Nucleic Acids
Res. 1993, 21, 5950–5956; b) R. Giege, B. Felden, M. A. Zen-
kova, V. N. Sil’nikov, V. V. Vlassov, Methods in Enzymology
2000, 318, 147–165; c) K. Shinozuka, Y. Nakashima, K. Shim-
izu, H. Sawai, Nucleosides Nucleotides Nucleic Acids 2001, 20,
117–130; d) N. G. Beloglazova, N. L. Mironova, D. A. Konev-
ets, V. A. Petyuk, V. N. Sil’nikov, V. V. Vlassov, M. A. Zenkova,
Molecular Biology 2002, 36, 869–873; e) S. Fouace, C. Gaudin,
S. Picard, S. Corvaisier, J. Renault, B. Carboni, B. Felden, Nu-
cleic Acids Res. 2004. 32, 151–157; f) I. L. Kuznetsova, M. A.
Zenkova, H. J. Gross, V. V. Vlassov, Nucleic Acids Res. 2005,
33, 1201–1212.
[17]
[18]
[19]
M. Endo, Y. Azuma, Y. Saga, A. Kuzuya, G. Kawai, M. Komi-
yama, J. Org. Chem. 1997, 62, 846–852.
J. C. Verheijen, B. A. L. M. Deiman, E. Yeheskiely, G. A.
van der Marel, J. H. van Boom, Angew. Chem. Int. Ed. 2000,
39, 369–372.
[20]
N. L. Mironova, D. V. Pyshnyi, E. M. Ivanova, M. A. Zenkova,
H. J. Gross, V. V. Vlassov, Nucleic Acids Res. 2004, 32, 1928–
1936.
Acknowledgments
[21]
[22]
M. Komiyama, T. Inokawa, J. Biochem 1994, 116, 719–720.
a) T. Goulain, A. Sidorov, N. Mignet, S. J. Thorpe, S. E. Lee,
J. A. Grasby, D. M. Williams, Nucleic Acids Res. 2001, 29,
1556–1563; b) D. M. Perrin, T. Garestier, C. Hélène, J. Am.
Chem. Soc. 2001, 123, 1556–1563; c) L. Lermer, Y. Roupioz,
R. Ting, D. M. Perrin, J. Am. Chem. Soc. 2002, 124, 9960–
9961; d) R. Ting, J. M. Thomas, L. Lermer, D. M. Perrin, Nu-
cleic Acids Res. 2004, 32, 6660–6672; e) A. V. Sidorov, J. A.
Grasby, D. M. Williams, Nucleic Acids Res. 2004, 32, 1591–
1601.
D. M. Perrin, T. Garestier, C. Hélène, Nucleosides Nucleotides
Nucleic Acids 1999, 18, 377–391.
S. E. Lee, A. Sidorov, T. Goulain, N. Mignet, S. J. Thorpe, J. A.
Brazier, M. J. Dickman, D. P. Hornby, J. A. Grasby, D. M. Wil-
liams, Nucleic Acids Res. 2001, 29, 1565–1573.
J. Matulic-Adamic, A. T. Daniher, A. Karpiesky, P. Haeberli,
D. Sweedler, L. Beigelman, Bioorg. Med. Chem. Letts. 2000,
10, 1299–1302.
L. Lermer, J. Hobbs, D. M. Perrin, Nucleosides Nucleotides Nu-
cleic Acids 2002, 21, 651–664.
N. N. Dioubankova, A. D. Malakhov, D. A. Stetsenko, V. A.
Korshun, M. J. Gait, Organic Letts. 2002, 4, 4607–4610.
E. M. Zubin, D. A. Stetsenko, A. V. Kachalova, M. J. Gait,
T. S. Oretskaya, Nucleic Acids Symposium Series 2005, 49, in
press.
T. M. Dewey, M. C. Zyzniewski, B. E. Eaton, Nucleosides Nu-
cleotides 1996, 15, 1611–1617.
A. Ono, N. Haginoya, M. Kiyokawa, N. Minakawa, A. Mat-
suda, Bioorg. Med. Chem. Letts. 1994, 4, 361–366.
N. Haginoya, A. Ono, Y. Nomura, Y. Ueno, A. Matsuda, Bi-
oconjugate Chem. 1997, 8, 271–280.
R. Cosstick, M. E. Douglas, J. Chem. Soc. Perkin Trans. 1
1991, 5, 1035–1040.
H. Lee, E. Luna, M. Hinz, J. J. Stezowski, A. S. Kiselyov, R. G.
Harvey, J. Org. Chem. 1995, 60, 5604–5613.
V. Nair, J. Richardson, J. Org. Chem. 1980, 45, 3639–3645.
Y. S. Sanghvi, G. D. Hoke, S. M. Freier, M. C. Zounes, C. Gon-
zales, L. Cummins, H. Sasmor, P. D. Cook, Nucleic Acids Res.
1993, 21, 3197–3203.
We thank Donna Williams and Matthew Watson for help with oli-
gonucleotide synthesis and technical assistance.
[1] J. B. Opalinska, A. M. Gewirtz, Nat. Rev. Drug Discovery 2002,
1, 503–514 and references therin.
[2] P. C. Zamecnik, in Methods in Molecular Medicine: Antisense
Therapeutics (Ed. S. Agrawal), Humana Press Inc., Totowa N.
J., 1996, pp. 1–11 and references cited therein.
[3] C. C. Mello, D. Conte, Nature 2004, 431, 338–342 and refer-
[23]
[24]
ences cited therein.
[4] C. H. Tung, S. Stein, Bioconjugate Chem. 2000, 11, 605–618.
[5] a) M. Komiyama, N. Takeda, T. Shiiba, Y. Takahashi, Y. Mats-
umoto, M. Yashiro, Nucleosides Nucleotides 1994, 13, 1297–
1309; b) J. Hall, D. Husken, R. Haner, Nucleic Acids Res. 1996,
24, 3522–3526; c) M. Komiyama, A. Kuzuya, R. Mizoguchi,
Bull. Chem. Soc. Jpn. 2002, 75, 2547–2554.
[6] a) G. B. Dreyer, P. B. Dervan, Proc. Natl. Acad. Sci. U. S. A.
1985, 82, 968–972; b) C. B. Chen, D. S. Sigman, Proc. Natl.
Acad. Sci. U. S. A. 1986, 83, 7147–7151.
[7] a) R. Breslow, M. J. Labelle, J. Am. Chem. Soc. 1986, 108,
2655–2659; b) E. Anslyn, R. Breslow, J. Am. Chem. Soc. 1989,
111, 4473–4482; c) E. Anslyn, R. Breslow, J. Am. Chem. Soc.
1989, 111, 5972–5973; d) R. Breslow, D. L. Huang, E. Anslyn,
Proc. Natl. Acad. Sci. U. S. A. 1989, 86, 1746–1750.
[8] J. K. Bashkin, J. K. Gard, A. S. Modak, J. Org. Chem. 1990,
55, 5125–5132.
[9] J. K. Bashkin, R. J. McBeath, A. S. Modak, K. R. Sample,
W. B. Wise, J. Org. Chem. 1991, 56, 3168–3176.
[10] K. Ushijima, M. Shirakawa, K. Kagoshima, W. Park, N. Mi-
yano-Kurosaki, H. Takaku, Bioorg. Med. Chem. 2001, 9, 2165–
2169.
[11] M. A. Reynolds, T. A. Beck, P. B. Say, D. A. Schwartz, B. P.
Dwyer, W. J. Daily, M. M. Vaghefi, M. D. Metzler, R. E. Klem,
L. J. Arnold Jr., Nucleic Acids Res. 1996, 24, 760–765.
[12] B. Verbeure, C. J. Lacey, M. Froeyen, J. Rozenski, P. Herdew-
ijn, Bioconjugate Chem. 2002, 13, 333–350.
[13] M. Beban, P. S. Miller, Bioconjugate Chem. 2000, 11, 599–603.
[14] N. N. Polushin, B. Chen, L. W. Anderson, J. S. Cohen, J. Org.
Chem. 1993, 58, 4606–4613.
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
5182
www.eurjoc.org
© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2005, 5171–5183