2128
J. F. Miller et al. / Bioorg. Med. Chem. Lett. 20 (2010) 2125–2128
and N-substituent optimization, it was possible to substantially
improve the antiviral activity (22-fold relative to 1). From these
studies, compound 30 emerged as a promising candidate showing
a 2 nM antiviral activity, a 1000-fold cytotoxicity window, and an
attractive twofold protein shift. In addition, compound 30 showed
acceptable pharmacokinetic properties in both rats and dogs. The
results described herein led us to pursue several additional struc-
ture–activity directions in the tetrahydroquinoline series. These
studies will be discussed in future reports.
N
N
N
N
a for 30
b for 31,32,33
c,d for 34
N
N
N
N
R
NH
N
25
30 - 34
Scheme 4. Reagents and conditions: (a) acetone, NaBH(OAc)3, 1,2-dichloroethane
(80%); (b) RCHO, NaBH(OAc)3, 1,2-dichloroethane (89% for 31); (c) TBSOCH2CHO,
NaBH(OAc)3, 1,2-dichloroethane; (d) TBAF, THF (56% for two steps).
Acknowledgements
We thank Richard Hazen, Wendell Lawrence, Mark Edelstein
and David McCoy for providing HIV-1 antiviral data and protein
shift data.
Table 3
Anti-HIV IC50
s
standard deviation (n), CC50
s
and protein shifts for distal N-
substituent optimization
References and notes
1. 2008 Report on the Global HIV/AIDS Epidemic, Joint United Nations Program on
HIV/AIDS (UNAIDS): Geneva, 2008.
N
N
2. (a) Detels, R.; Tarwater, R.; Phair, J. P.; Margolick, J.; Riddler, S. A.; Munoz, A.
Aids 2001, 15, 347; (b) Palella, F. J.; Delaney, K. M.; Moorman, A. C.; Loveless, M.
O.; Fuhrer, J.; Satten, G. A.; Aschman, D. J.; Holmberg, S. D. N. Eng. J. Med. 1998,
338, 853; (c) Hammer, S. M.; Squires, K. E.; Hughes, M. D.; Grimes, J. M.;
Demeter, L. M.; Currier, J. S.; Eron, J. J.; Feinberg, J. E.; Balfour, H. H.; Deyton, L.
R.; Chodakewitz, J. A.; Fischl, M. A.; Phair, J. P.; Pedneault, L.; Nguyen, B. Y.;
Cook, J. C. N. Eng. J. Med. 1997, 337, 725.
N
N
R
N
3. Vandekerckhove, L.; Verhofstede, C.; Vogelaers, D. J. Antimicrob. Chemother.
2009, 63, 1087.
4. Chirch, L. M.; Morrison, S. A.; Steigbigel, R. T. Exp. Opin. Pharmacother. 2009, 10,
1203.
5. (a) Mallewa, J. E.; Wilkins, E.; Vilar, J.; Mallewa, M.; Doran, D.; Back, D.;
Pirmohamed, M. J. Antimicrob. Chemother. 2008, 62, 648; (b) Johnson, M. O.;
Neilands, T. B. Aids Behav. 2007, 11, 575.
a
b
Compound
R
IC50 (nM)
CC50 (nM)
Fold IC50 protein
shiftc
26
25
Me
H
6.0 1 (2)
8.0 2 (2)
3600
3500
10
1.2
6. Carlo-Federico, P.; Moyle, G.; Tsoukas, C.; Ratanasuwan, W.; Gatell, J.;
Schechter, M. J. Med. Virol. 2008, 80, 565.
30
2.0 1 (4)
2100
2.0
7. (a) Qian, K.; Morris-Natschke, S. L.; Lee, K. Med. Res. Rev. 2009, 29, 369; (b)
Kuritzkes, D. R. Curr. Opin. HIV AIDS 2009, 4, 82; (c) Kazmierski, W. M.;
Gudmundsson, K. S.; Piscitelli, S. C. Ann. Rep. Med. Chem. 2007, 42, 301; (d)
Mosley, C. A.; Wilson, L. J.; Wiseman, J. M.; Skudlarek, J. W.; Liotta, D. C. Expert
Opin. Ther. Patents 2009, 19, 23; (e) Grande, F.; Garofalo, A.; Neamati, N. Curr.
Pharm. Des. 2008, 14, 385.
31
32
8.1 2 (2)
15 2 (2)
>2000
2300
6.2
5.1
8. Shaheen, F.; Collman, R. G. Curr. Opin. Infect. Dis. 2004, 17, 7.
9. Schuitemaker, H.; Koot, M.; Kootstra, N. A.; Dercksen, M. W.; de Goede, R. E.;
van Steenwijk, R. P.; Lange, J. M.; Schattenkerk, J. K.; Miedema, F.; Tersmette, M.
J. Virol. 1992, 66, 1354.
10. Grande, F.; Garofalo, A.; Neamati, N. Curr. Pharm. Des. 2008, 14, 385.
11. Hendrix, C. W.; Collier, A. C.; Lederman, M. M.; Schols, D.; Pollard, R. B.; Brown,
S.; Jackson, J. B.; Coombs, R. W.; Glesby, M. J.; Flexner, C. W.; Bridger, G. J.;
Badel, K.; MacFarland, R. T.; Henson, G. W.; Calandra, G. J. Acquir. Immune Defic.
Syndr. 2004, 37, 1253.
N
33
34
33 3 (2)
12 3 (2)
2500
2500
8.7
9.1
OH
a,b
See footnotes a and b in Table 1.
Protein shift is the shift in concentration at which 50% efficacy in the antiviral
assay is observed in the presence of human serum albumin (45 mg/mL) and
glycoprotein (1 mg/mL).
c
a-acid
12. Moyle, G.; DeJesus, E.; Boffito, M.; Wong, R. S.; Gibney, C.; Badel, K.;
MacFarland, R.; Calandra, G.; Bridger, G.; Becker, S. Clin. Infect. Dis. 2009, 48,
798.
13. Gudmundsson, K. S.; Sebahar, P. R.; Richardson, L. D.; Miller, J. F.; Turner, E. M.;
Catalano, J. G.; Spaltenstein, A.; Lawrence, W.; Thomson, M.; Jenkinson, S.
Bioorg. Med. Chem. Lett. 2009, 19, 5048.
both rats and dogs. Following a 1 mg/kg IV dose in rats, 30 showed
a 5.8 h half life and an 8.5 mL/min/kg clearance value. Oral dosing
in rats at 3 mg/kg produced an 11% oral bioavailability. After IV
dosing at 1 mg/kg in dogs, an 11 h half life and a 9.4 mL/min/kg
clearance value was observed. Dog oral dosing at 1 mg/kg yielded
a 22% oral bioavailability. In addition, screening of compound 30
against a panel of enzymes and receptors showed little risk of
undesirable off-target activity including hERG.
14. Kelly, T. R.; Lebedev, R. L. J. Org. Chem. 2002, 67, 2197.
15. All compounds were also characterized in a cell fusion CXCR4 receptor binding
assay. The resulting SAR tracked very closely with the HOS antiviral data. For
example, compounds 1, 20 and 30 showed IC50s in the receptor binding assay
of 47 nM, 76 nM, and 4.5 nM, respectively. In addition, representative
compounds were characterized in a cell based functional assay and were
shown to be non-competitive antagonists of the CXCR4 receptor. For assay
protocols see: Gudmundsson, K.; Miller, J. F.; Turner, E. M. International Patent
WO 2006/020415, 2006.
Using the open chain analog 1 as a starting point for SAR stud-
ies, we have demonstrated that by employing the appropriate con-
formational modifications, in combination with stereochemical
16. Gudmundsson, K. S.; Boggs, S. D.; Catalano, J. G.; Svolto, A.; Spaltenstein, A.;
Thomson, M.; Wheelan, P.; Jenkinson, S. Bioorg. Med. Chem. Lett. 2009, 19, 6399.