3
c = 82.83(3)u, V = 2616.4(9) A ; rcalcd = 1.534; m = 1.425 mm21
;
[2(FeHFe)]+ possesses the sole transoid ba–ba geometry (Fig. 3
(bottom)), which is identical with the coordination orientation of
other reported m-hydride diiron analogues.4,8,9 The crystallo-
graphic evidence indicates that a rotation of the Fe(CO)2PMe3
unit in the ap–ba isomer of 2 occurs during the protonation
process of the iron atoms. In solution, the coordination
configuration of 2 might be mobile structural forms.1a,5 This kind
of ligand-rotation phenomenon has been observed in the
protonation processes of diiron and diruthenium propanedithio-
lates.4,8,14 The general characteristics of the molecular structures,
e.g. the butterfly framework of the 2Fe2S center, the pseudo-
pyramidal coordination geometry of each iron atom in 2 and the
distorted octahedral coordination sphere of the iron atoms in
[2(FeHFe)]+, are in agreement with previously reported 2Fe2S
˚
T = 293(2) K; Z = 4; R1 = 0.0485 and wR2 = 0.1174 for 11823 reflections
with I > 2s(I). CCDC 246474. Crystal data for [2(FeHFe)]+[PF6]2:
C18H27F6Fe2N2O6P3S2, M = 750.15; monoclinic; P2(1)/n; a = 11.3070(6),
˚
b = 14.1755(5), c = 18.9123(9) A, a = 90.00, b = 104.846(3), c = 90.00u,
V = 2930.1(2) A ; rcalcd = 1.700; m = 1.371 mm21; T = 293(2) K; Z = 4;
3
˚
R1 = 0.0531 and wR2 = 0.1382 for 7212 reflections with I > 2s(I). CCDC
279852. For crystallographic data in CIF or other electronic format see
DOI: 10.1039/b513270c
1 (a) I. P. Georgakaki, L. M. Thomson, E. J. Lyon, M. B. Hall and
M. Y. Darensbourg, Coord. Chem. Rev., 2003, 238–239, 255–266; (b)
D. J. Evans and C. J. Pickett, Chem. Soc. Rev., 2003, 32, 268–275; (c)
˚
T. B. Rauchfuss, Inorg. Chem., 2004, 43, 14–26; (d) L. Sun, B. Akermark
and S. Ott, Coord. Chem. Rev., 2005, 249, 1653–1663.
2 (a) Z. Cao and M. B. Hall, J. Am. Chem. Soc., 2001, 123, 3734–
3742; (b) H. Fan and M. B. Hall, J. Am. Chem. Soc., 2001, 123,
3828–3829.
3 (a) M. Bruschi, P. Fantucci and L. D. Gioia, Inorg. Chem., 2002, 41,
1421–1429; (b) T. Zhou, Y. Mo, A. Liu, Z. Zhou and K. R. Tsai, Inorg.
Chem., 2004, 43, 923–930.
4 X. Zhao, I. P. Georgakaki, M. L. Miller, R. Mejia-Rodriguez, C. Chiang
and M. Y. Darensbourg, Inorg. Chem., 2002, 41, 3917–3928.
5 J. L. Nehring and D. M. Heinekey, Inorg. Chem., 2003, 42, 4288–4292.
6 R. Mejia-Rodriguez, D. Chong, J. H. Reibenspies, M. P. Soriaga and
M. Y. Darensbourg, J. Am. Chem. Soc., 2004, 126, 12004–12014.
7 (a) J. Capon, S. E. Hassnaoui, F. Gloaguen, P. Schollhammer and
J. Talarmin, Organometallics, 2005, 24, 2020–2022; (b) J. W. Tye, J. Lee,
H.-W. Wang, R. Mejia-Rodriguez, M. B. Hall and M. Y. Darensbourg,
Inorg. Chem., 2005, 44, 5550–5552.
models.4,8,9 The Fe–Fe bond in the ap–ba isomer of 2 is ca. 0.039 A
˚
shorter than that in its ba–ba counterpart because of the smaller
steric hindrance in the ap–ba orientation of the PMe3 ligands. The
Fe–CCO and Fe–P coordination bonds are statistically indis-
tinguishable in the two configurational isomers of 2, while the
˚
mean Fe–S bond in the ap–ba isomer is 0.011(5) A longer than
…
˚
that in the ba–ba geometry. The Fe Fe distance (2.5879(8) A) of
[2(FeHFe)]+ shows
slight increase as compared to the
a
˚
corresponding ba–ba isomer (2.5671(10) A) of 2, in which there
is an Fe–Fe bond. The mean Fe–CCO and Fe–P coordination
bonds of the m-hydride complex are also lengthened by 0.027(8)
8 F. Gloaguen, J. D. Lawrence, T. B. Rauchfuss, M. Be´nard and
M. Rohmer, Inorg. Chem., 2002, 41, 6573–6582.
˚
and 0.021(4) A, respectively, relative to the ba–ba isomer of 2.
9 X. Zhao, I. P. Georgakaki, M. L. Miller, J. C. Yarbrough and
M. Y. Darensbourg, J. Am. Chem. Soc., 2001, 123, 9710–9711.
10 (a) M. Schmidt, S. M. Contakes and T. B. Rauchfuss, J. Am. Chem.
Soc., 1999, 121, 9736–9737; (b) F. Gloaguen, J. D. Lawrence and
T. B. Rauchfuss, J. Am. Chem. Soc., 2001, 123, 9476–9477; (c)
D. Chong, I. P. Georgakaki, R. Mejia-Rodriguez, J. Sanabria-
Chinchilla, M. P. Soriaga and M. Y. Darensbourg, Dalton Trans.,
2003, 4150–4163.
In this work, two protonated species of the diiron azadithiolate
2 were obtained and characterized. One is a m-hydride diiron
complex [2(FeHFe)]+ and the other is assumed to be a m-S-
protonated cation [2(SH)]+, which is readily deprotonated in the
presence of pyridine. The S atom is preferred over the N atom in
the protonation process of 2 due to the weak basicity of the
bridging-N, resulting from the strong electron-withdrawing NO2
group on the para position of the N,N-dialkylaniline. The results of
this work provide indirect experimental evidence for the protona-
tion capability of the m-S atoms in the diiron subsite of Fe-only
hydrogenases. Further studies on protonation of diiron azadithio-
late model complexes are under way.
11 (a) J. D. Lawrence, H. Li, T. B. Rauchfuss, M. Be´nard and M. Rohmer,
Angew. Chem., 2001, 113, 1818–1821, Angew. Chem., Int. Ed., 2001, 40,
˚
1768–1771; (b) S. Ott, M. Kritikos, B. Akermark, L. Sun and
R. Lomoth, Angew. Chem., 2004, 116, 1024–1027, Angew. Chem. Int.
Ed., 2004, 43, 1006–1009; (c) T. Liu, M. Wang, Z. Shi, H. Cui, W. Dong,
˚
J. Chen, B. Akermark and L. Sun, Chem.–Eur. J., 2004, 10, 4474–4479;
˚
(d) F. Wang, M. Wang, X. Liu, K. Jin, W. Dong, G. Li, B. Akermark
and L. Sun, Chem. Commun., 2005, 3221–3223; (e) P. Das, J. Capon,
F. Gloaguen, F. Y. Pe´tillon, P. Schollhammer and J. Talarmin, Inorg.
Chem., 2004, 43, 8203–8205.
We are grateful to the Natural Science Foundation of China
(Grants 20471013 and 20128005), the Swedish Energy Agency and
the Swedish Research Council for financial support of this work.
12 J. D. Lawrence, H. Li and T. B. Rauchfuss, Chem. Commun., 2001,
1482–1483.
13 X. Zhao, C. Chiang, M. L. Miller, M. V. Rampersad and
M. Y. Darensbourg, J. Am. Chem. Soc., 2003, 125, 518–524.
14 A. K. Justice, R. C. Linck, T. B. Rauchfuss and S. R. Wilson, J. Am.
Chem. Soc., 2004, 126, 13214–13215.
Notes and references
¯
{ Crystal data for 2: C18H26Fe2N2O6P2S2, M = 604.17; monoclinic; P1;
˚
a = 13.248(3), b = 14.676(3), c = 15.028(3) A, a = 64.96(3), b = 82.40(3),
This journal is ß The Royal Society of Chemistry 2006
Chem. Commun., 2006, 305–307 | 307