C O M M U N I C A T I O N S
Scheme 1. Synthesis of Lactam-Containing Haptens
Figure 3. Inhibition of 3-oxo-C12-AHL-mediated QS signaling by RS2
mAbs and control mAb in P. aeruginosa PAO (wild-type, filled columns)
and in PAO-JM2 (open columns) in a GFP reporter assay (A). Inhibition
of pyocyanin production in P. aeruginosa PAO (wild-type, filled columns)
and in PAO-JM2 (open columns) by mAb RS2-1G9 (B). Anti-nicotine
and anti-stilbene mAbs (NIC9D9 and EP2-19G2) and BSA were used as
additional controls.
low to moderate affinity (Kd ) 10-50 µM) to the short-chain 3-oxo-
AHLs and virtually no recognition of 3-oxo-C12-AHL nor the
lactam.
In total, the overall immune response seen for haptens 7-9 might
be construed as only moderately effective. However, we note that
this is one of the few demonstrations of the generation of tight
binding antibodies to structures of basically aliphatic composition
with no aromaticity, charge, and few hydrogen bond donor/acceptor
opportunities.7 All of these interactions are normally considered
critical for the generation of antibodies with high affinity and
specificity.
To investigate potential disruption of bacterial cell-cell com-
munication, five RS2 mAbs and one unrelated control mAb were
selected and evaluated for their ability to inhibit 3-oxo-C12-AHL-
mediated QS signaling in a green fluorescent protein (GFP) reporter
assay using the wild-type P. aeruginosa PAO strain and the double
knockout PAO-JM2 (∆rhlI, ∆lasI) strain. 3-oxo-C12-AHL (either
endogenously (PAO) produced or exogenously (PAO-JM2) added)
is required for reporter gene transcription activation, which in turn
can be measured as the level of GFP fluorescence.
The mAb RS2-1G9 exhibited excellent inhibition of QS signaling
in both P. aeruginosa strains, while all other tested mAbs show
little or no inhibition (Figure 3A). Excitingly, RS2-1G9 is the first
reported antibody to show an inhibitory effect on QS signaling in
both wild-type and mutant P. aeruginosa PAO cells. Furthermore,
in our evaluation of mAb RS2-1G9 for its ability to prevent
virulence factor expression, we observed a clear inhibitory effect
in both PAO and PAO-JM2 cultures on the production of pyocya-
nin, a QS-controlled virulence factor in P. aeruginosa (Figure 3B).4
In summary, we have demonstrated the validity of our hapten
design strategy to obtain specific mAbs to AHLs. One mAb, RS2-
1G9, possesses the ability to inhibit 3-oxo-C12-AHL-based QS
signaling. This antibody may be envisioned as a tool for future
investigations into 3-oxo-C12-AHL-based QS, which may aid in
gaining new insights into the pathogenesis of P. aeruginosa and
may ultimately lead to the development of new strategies to combat
bacterial diseases.
Acknowledgment. We thank Dr. Barbara H. Iglewski and Jane
Malone of the University of Rochester for the generous gift of
bacteria and plasmids used in our study. This work was supported
by the National Institutes of Health (AI055781) and The Skaggs
Institute for Chemical Biology.
Supporting Information Available: Experimental procedures for
the syntheses of compounds 1-9 and bioassays. This material is
References
(1) (a) Waters, C. M.; Bassler, B. L. Annu. ReV. Cell DeV. Biol. 2005, 21,
319-346. (b) de Kievit, T. R.; Iglewski, B. H. Infect. Immun. 2000, 68,
4839-4849. (c) Fuqua, W. C.; Winans, S. C.; Greenberg, E. P. J.
Bacteriol. 1994, 176, 269-275.
(2) (a) Chun, C. K.; Ozer, E. A.; Welsh, M. J.; Zabner, J.; Greenberg, E. P.
Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 3587-3590. (b) Pearson, J. P.;
Gray, K. M.; Passador, L.; Tucker, K. D.; Eberhard, A.; Iglewski, B. H.;
Greenberg, E. P. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 197-201. (c)
Pearson, J. P.; Passador, L.; Iglewski, B. H.; Greenberg, E. P. Proc. Natl.
Acad. Sci. U.S.A. 1995, 92, 1490-1494. (d) Wagner, V. E.; Bushnell,
D.; Passador, L.; Brooks, A. I.; Iglewski, B. H. J. Bacteriol. 2003, 185,
2080-2095. (e) Juhas, M.; Eberl, L.; Tummler, B. EnViron. Microbiol.
2005, 7, 459-471.
(3) (a) Alksne, L. E.; Projan, S. J. Curr. Opin. Biotechnol. 2000, 11, 625-
636. (b) Lyon, G. J.; Muir, T. W. Chem. Biol. 2003, 10, 1007-1021. (c)
Finch, R. G.; Pritchard, D. I.; Bycroft, B. W.; Williams, P.; Stewart, G.
S. J. Antimicrob. Chemother. 1998, 42, 569-571.
(4) (a) Smith, K. M.; Bu, Y. G.; Suga, H. Chem. Biol. 2003, 10, 563-571.
(b) Geske, G. D.; Wezeman, R. J.; Siegel, A. P.; Blackwell, H. E. J. Am.
Chem. Soc. 2005, 127, 12762-12763. (c) Smith, K. M.; Bu, Y.; Suga, H.
Chem. Biol. 2003, 10, 81-89. (d) Manefield, M.; Rasmussen, T. B.;
Henzter, M.; Andersen, J. B.; Steinberg, P.; Kjelleberg, S.; Givskov, M.
Microbiology 2002, 148, 1119-1127.
(5) Kaufmann, G. F.; Sartorio, R.; Lee, S. H.; Rogers, C. J.; Meijler, M. M.;
Moss, J. A.; Clapham, B.; Brogan, A. P.; Dickerson, T. J.; Janda, K. D.
Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 309-314.
(6) Pellegata, R.; Pinza, M.; Pifferi, G. Synthesis 1978, 614-616.
(7) Gargir, A.; Ofek, I.; Meron-Sudai, S.; Tanamy, M. G.; Kabouridis, P. S.;
Nissim, A. Biochim. Biophys. Acta 2002, 1569, 167-173.
JA0578698
9
J. AM. CHEM. SOC. VOL. 128, NO. 9, 2006 2803