(4:1) of CH2Cl2 and methanol at -78 °C followed by a reductive
workup with NaBH4 furnished alcohol 23 in 90% yield. Alcohol
23 was readily converted to Boc-derivative 14 by exposure to
aqueous KOH in ethanol followed by protection of the resulting
crude amine as Boc derivative 14 as described previously.
We demonstrated the utility of difluorophenylethyl oxirane
derivative 4 in the synthesis of known BACE1 inhibitor 27.14 As
shown in Scheme 4, reaction of oxirane 4 with 3-methoxy-
benzylamine in isopropanol at 80 °C for 12 h provided the
corresponding aminoalcohol. Deprotection of the Boc-group by
exposure to trifluoroacetic acid (TFA) in CH2Cl2 at 23 °C for 2 h
afforded aminoalcohol 25. Coupling of the primary amine with
known14 isophthalic acid derivative 26 in the presence of HATU
and triethylamine in CH2Cl2 at 23 °C for 16 h furnished inhibitor
27 in 43% yield over three steps.
Supplementary Data
Supplementary data associated with this article can be found in
the online version.
References and notes
1. Ghosh, A. K. Ed. ‘Aspartic acid protease as therapeutic
targets’ Wiley-VCH, Weinheim, Germany, 2010.
2. Ghosh, A. K.; Osswald, H. L.; Prato, G. J. Med. Chem. 2016,
59, 5172-5208.
3. Ghosh, A. K.; Cárdenas, E. L.; Osswald, H. L. Top. Med.
Chem., 2016, ASAP; Ghosh, A. K.; Tang, J. ChemMedChem,
2015, 10, 1463-1466.
4. Ghosh, A. K.; Osswald, H. L. Chem. Soc. Rev. 2014, 43,
6765-6813.
5. Hardy, J.; Selkoe, D. J. Science 2002, 297, 353-356.
6. Selkoe, D. J.; Schenk, D. Annu. Rev. Pharacol. 2003, 43,
545-584.
7. Citron, M. Trends in Pharma. Sci. 2004, 25, 92-97.
8. Iserloh, U.; Cummins, J. N. "Peptidomimetic BACE1
Inhibitors for Treatment of Alzheimer's Disease: design and
evolution in Aspartic Acid proteases as Therapeutic Targets"
(ed A. K. Ghosh) Wiley-VCH, 2010, p. 441-479.
9. Cole, C. D.; Bursavich, M. Nonpeptide BACE1 inhibitors:
Design and Synthesis In: Ghosh AK, ed. Aspartic acid
proteases as therapeutic targets. Wiley-VCH, 2010, p. 481-
509.
10. Ghosh, A. K.; Brindisi, M.; Tang, J. J. Neurochem. 2012, 120
Suppl 1, 71-83.
11. Vassar, R.; Kovacs, D. M.; Yan, R.; Wong, P. C. J. Neurosci.
2009, 29, 12787-12794.
12. Vassar, R. Alzheimer's Res. Ther. 2014, 6, 89.
13. Ghosh, A. K.; Bilcer, G.; Hong, L.; Koelsch, G.; Tang, J.
Curr. Alzheimer Res. 2007, 4, 418-422.
Scheme 4. Synthesis of BACE1 inhibitor 27
14. Maillard, M. C.; Hom, R. K.; Benson, T. E.; Moon, J. B.;
Mamo, S.; Bienkowski, M.; Tomasselli, A. G.; Woods, D. D.;
Prince, D. B.; Paddock, D. J.; Emmons, T. L.; Tucker, J. A.;
Dappen, M. S.; Brogley, L.; Thorsett, E. D.; Jewett, N.;
Sinha, S.; John, V. J. Med. Chem. 2007, 50, 776-781.
15. Hom, R. K.; Gailunas, A. F.; Mamo, S.; Fang, L. Y.; Tung, J.
S.; Walker, D. E.; Davis, D.; Thorsett, E. D.; Jewett, N. E.;
Moon, J. B.; John, V. J. Med. Chem. 2004, 47, 158-164.
16. Greenlee, W. J. Med. Res. Rev. 1990, 10, 173-236.
17. Ghosh, A. K.; Bilcer, G.; Schiltz, G. Synthesis, 2001, 15,
2203-2229.
18. Evans, D. A.; Takacs, J. M.; McGee, L. R.; Ennis, M. D.;
Mathre, D. J.; Bartroli, J. Pure & Appl. Chem. 1981, 53,
1109-1127.
19. Ghosh, A. K.; Dawson, Z. Synthesis 2009, 17, 2992-3002.
20. Ghosh, A. K.; Fidanze, S. J. Org. Chem. 1998, 63, 6146-
6152.
In conclusion, we accomplished convenient syntheses of
aminoalkyl oxiranes 4 and 7 containing 3,5-difluorobenzyl side
chain using an asymmetric aldol reaction as the key step. The
stereochemistry of both stereogenic centers was set by highly
diastereoselective syn- and anti-aldol reactions. The removal of
the chiral auxiliary followed by Curtius rearrangement of the
resulting acid installed the amine functionality. This was readily
converted to epoxides 4 and 7 efficiently. These epoxides are
important building blocks for the synthesis of a variety of
BACE1 inhibitors incorporating hydroxyethylamine and
hydroxyethylene isosteres. The overall route is quite efficient,
scalable and provides facile access to diverse inhibitors. We have
converted epoxide 4 to BACE1 inhibitor 27. Further application
of these epoxides in the synthesis of novel protease inhibitors is
in progress in our laboratory.
21. am Ende, D. J.; DeVries, K. M.; Clifford, P. J.; Brenek, S. J.
Org. Proc. Res. & Dev. 1998, 2, 382-392.
22. Ghosh, A. K.; Onishi, M. J. Am. Chem. Soc. 1996, 118, 2527-
2528.
Acknowledgments
23. Akaji, K.; Teruya, K.; Aimoto, S. J. Org. Chem. 2003, 68,
4755-4763.
Financial support by the National Institutes of Health (GM53386)
is gratefully acknowledged. We would also like to thank the
Purdue University Center for Cancer Research, which supports
the shared NMR and mass spectrometry facilities.
24. Shi, Z.; et al. Bioorg. Med. Chem. Lett. 2005, 13, 4200-4208.
25. Jin, Y. Z.; et al. Green Chem. 2002, 4, 498-500.
26. Ghosh, A. K.; Kumaragurubaran, N.; Hong, L.; Kulkarni, S.
S.; Xu, X.; Chang, W.; Weerasena, V.; Turner, R.; Koelsch,
G.; Bilcer, G.; Tang, J. J. Med. Chem. 2007, 50, 2399-2407.
27. Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981,
103, 2127-2129.
28. Gage, J. R.; Evans, D. A. Org. Synth. 1990, 68, 83-91.