M. Mayor, T. Wandlowski, N. Tao et al.
FULL PAPER
[10] R. E. Holmlin, R. F. Ismagilov, R. Haag, V. Mujica, M. A.
Ratner, M. A. Rampi, G. M. Whitesides, Angew. Chem. Int. Ed.
2001, 40, 2316–2320.
[11] J. G. Kushmerick, D. B. Holt, J. C. Yang, J. Naciri, M. H.
Moore, R. Shashidhar, Phys. Rev. Lett. 2002, 89, 086802/1–
086802/4.
[12] J. G. Kushmerick, D. B. Holt, S. K. Pollack, M. A. Ratner, J. C.
Yang, T. L. Schull, J. Naciri, M. H. Moore, R. Shashidhar, J.
Am. Chem. Soc. 2002, 124, 10654–10655.
[13] J. G. Kushmerick, A. S. Blum, D. P. Long, Anal. Chim. Acta
2006, 568, 20–27.
[14] N. Tao, J. Mater. Chem. 2005, 15, 3260–3263.
[15] X. Li, B. Xu, X. Xiao, X. Yang, L. Zang, N. Tao, J. Chem.
Soc. Faraday Trans. 2006, 131, 111–120.
[16] J. He, O. Sankey, M. Lee, N. Tao, X. Li, S. Lindsay, J. Chem.
Soc. Faraday Trans. 2006, 131, 145–154.
[17] M. Elbing, R. Ochs, M. Koentopp, M. Fischer, C.
von Hänisch, F. Weigend, F. Evers, H. B. Weber, M. Mayor,
Proc. Natl. Acad. Sci. USA 2005, 102, 8815–8820.
[18] D. Dulic, S. J. van der Molen, T. Kudernac, H. T. Jonkman,
J. J. D. de Jong, T. N. Bowden, J. van Esch, B. L. Feringa, B. J.
van Wees, Phys. Rev. Lett. 2003, 91, 207402/1–207402/4.
[19] Z. Li, I. Pobelov, B. Han, T. Wandlowski, A. Błaszczyk, M.
Mayor, Nanotechnology 2007, 18, 044018/1–044018/8.
[20] W. Haiss, H. van Zalinge, S. J. Higgins, D. Bethell, H. Höbenre-
ich, D. J. Schiffrin, R. J. Nichols, J. Am. Chem. Soc. 2003, 125,
15294–15295.
chromatography (SiO2, CH2Cl2/MeOH, 100:0 to 99:1) afforded 1
(43 mg, 51%) as a yellow solid.
Synthesis of 1 from 18: Compound 18 (206 mg, 0.42 mmol) was
dissolved in dry CH2Cl2 (25 mL), then BBr3 (1 in CH2Cl2,
1.7 mL, 1.70 mmol) was added dropwise over 5 min at –7 °C. The
reaction mixture was stirred at –7 °C for 25 min, then poured onto
ice and the product was extracted with CH2Cl2. The combined or-
ganic layers were dried with MgSO4, filtered and the solvents evap-
orated to dryness. Flash chromatography (SiO2, toluene/AcOEt,
85:15 to 80:20) afforded 1 (112 mg, 58%) as a yellow solid.
Synthesis of 1 from 19: A solution of compound 19 (200 mg,
0.37 mmol) in a mixture of dry toluene (60 mL) and acetyl chloride
(13 mL) was stirred at room temp. and then BBr3 (1 in CH2Cl2,
740 µL, 0.74 mmol) was added. More BBr3 (1 in CH2Cl2, 740 µL,
0.74 mmol) was added after 1, 2, 3 and 4 h. The solution was co-
oled to 0 °C, H2O was added, the organic phase was separated
and the aqueous phase was further extracted with CH2Cl2. The
combined organic layers were dried with MgSO4, filtered and the
solvents evaporated to dryness. Flash chromatography (SiO2,
CH2Cl2/MeOH, 100:0 to 99:1) followed by filtration through SiO2
with CHCl3 afforded 1 (134 mg, 79%) as a yellow solid.
1,4-Bis[(4-tert-butylsulfanylphenyl)ethynyl]-2,3-dihydroxybenzene
(20): A solution of compound 19 (106 mg, 0.20 mmol) in a mixture
of THF (9.5 mL) and aqueous 37% HCl (0.5 mL) was stirred at
room temp. for 19 h. The solution was evaporated, CH2Cl2 and
H2O were added, the organic phase was separated and the aqueous
phase was further extracted with CH2Cl2. The combined organic
layers were dried with MgSO4, filtered and the solvents evaporated
to dryness. Flash chromatography (SiO2, CH2Cl2) afforded 20
(83 mg, 87%) as a yellow solid, m.p. 198–201 °C. Rf = 0.31 (SiO2,
CH2Cl2). 1H NMR (400 MHz, CDCl3): δ = 1.31 (s, 18 H), 5.78 (br.
s, 2 H), 7.00 (s, 2 H), 7.48–7.56 (m, 8 H) ppm. 13C NMR (100 MHz,
CDCl3): δ = 31.1, 46.8, 85.0, 96.4, 110.8, 122.9, 123.6, 131.7, 134.2,
137.4, 144.4 ppm. C30H30O2S2·0.3H2O (492.09): calcd. C 73.22, H
6.27; found C 73.20, H 6.28. MS (EI): m/z (%) = 486.1 (39) [M]+,
430.1 (7) [M – C4H9 + H]+, 374.0 (100) [M – 2C4H9 + 2H]+.
[21] Z. Li, B. Han, G. Meszaros, I. Pobelov, T. Wandlowski, A.
Błaszczyk, M. Mayor, J. Chem. Soc. Faraday Trans. 2006, 131,
121–143.
[22] A. S. Blum, J. G. Kushmerick, D. P. Long, C. H. Patterson,
J. C. Yang, J. C. Henderson, Y. Yao, J. M. Tour, R. Shashidhar,
B. R. Ratna, Nat. Mater. 2005, 4, 167–172.
[23] E. Lörtscher, J. W. Ciszek, J. Tour, H. Riel, Small 2006, 2, 973–
977.
[24] C. P. Collier, G. Matterstei, E. W. Wong, Y. Luo, K. Beverly, J.
Sampaio, F. M. Raymo, J. F. Stoddart, J. R. Heath, Science
2000, 289, 1172–1175.
[25] Y. Luo, C. P. Collier, J. O. Jeppesen, K. A. Nielsen, E. DeIonno,
G. Ho, J. Perkins, H.-R. Tseng, T. Yamamoto, J. F. Stoddart,
J. R. Heath, ChemPhysChem 2002, 3, 519–525.
[26] C. P. Collier, J. O. Jeppesen, Y. Luo, J. Perkins, E. W. Wong,
J. R. Heath, J. F. Stoddart, J. Am. Chem. Soc. 2001, 123,
12632–12641.
Acknowledgments
[27]
J. O. Jeppesen, K. A. Nielsen, J. Perkins, S. A. Vignon, A.
Di Fabio, R. Ballardini, M. T. Gandolfi, M. Venturi, V. Balz-
ani, J. Becher, J. F. Stoddart, Chem. Eur. J. 2003, 9, 2982–3007.
J. Chen, M. A. Reed, A. M. Rawlett, J. M. Tour, Science 1999,
286, 1550–1552.
J. K. Sørensen, M. Vestergaard, A. Kadziola, K. Kils, M. B.
Nielsen, Org. Lett. 2006, 8, 1173–1176.
E. H. van Dijk, D. J. T. Myles, M. H. van der Veen, J. C. Hum-
melen, Org. Lett. 2006, 8, 2333–2336.
F.-R. F. Fan, J. Yang, L. Cai, D. W. Price Jr, S. M. Dirk, D. V.
Kosynkin, Y. Yao, A. M. Rawlett, J. M. Tour, A. J. Bard, J.
Am. Chem. Soc. 2002, 124, 5550–5560.
F.-R. F. Fan, J. Yang, S. M. Dirk, D. W. Price, D. Kosynkin,
J. M. Tour, A. J. Bard, J. Am. Chem. Soc. 2001, 123, 2454–2455.
R. W. Bates, C. J. Gabel, J. Ji, T. Rama-Devi, Tetrahedron 1995,
51, 8199–8212.
C. Koradin, W. Dohle, A. L. Rodriguez, B. Schmid, P. Knochel,
Tetrahedron 2003, 59, 1571–1587.
S. Anderson, P. N. Taylor, G. L. B. Verschoor, Chem. Eur. J.
2004, 10, 518–527.
N. G. Kundu, M. Pal, J. S. Mahanty, S. K. Dasgupta, J. Chem.
Soc. Chem. Commun. 1992, 41–42.
The authors acknowledge the Volkswagen Foundation and the
Helmholtz Foundation (Project “Integrated Molecular Switches”)
for supporting this work. I. P. also acknowledges support through
a Ph. D. fellowship sponsored by Deutscher Akademischer Aus-
tauschdienst (DAAD). We are grateful to Dr. Elaine Medlycott for
carefully reading this manuscript.
[28]
[29]
[30]
[31]
[1] N. Weibel, S. Grunder, M. Mayor, Org. Biomol. Chem. 2007, 5,
2343–2353.
[2] R. L. Carroll, C. B. Gorman, Angew. Chem. Int. Ed. 2002, 41,
4378–4400.
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[3] C. Joachim, J. K. Gimzewski, A. Aviram, Nature 2000, 408,
541–548.
[4] N. J. Tao, Nat. Nanotechnol. 2006, 1, 173–181.
[5] J. R. Heath, M. A. Ratner, Phys. Today 2003, 56, 43–49.
[6] C. Joachim, M. A. Ratner, Proc. Natl. Acad. Sci. USA 2005,
102, 8801–8808.
[7] J. Reichert, R. Ochs, D. Beckmann, H. B. Weber, M. Mayor,
H. von Löhneysen, Phys. Rev. Lett. 2002, 88, 176804/1–176804/
4.
[8] M. Mayor, C. von Hänisch, H. B. Weber, J. Reichert, D.
Beckmann, Angew. Chem. Int. Ed. 2002, 41, 1183–1186.
[9] M. Mayor, H. B. Weber, J. Reichert, M. Elbing, C.
von Hänisch, D. Beckmann, M. Fischer, Angew. Chem. Int. Ed.
2003, 42, 5834–5838.
K. Hiroya, N. Suzuki, A. Yasuhara, Y. Egawa, A. Kasano, T.
Sakamoto, J. Chem. Soc. Perkin Trans. 1 2000, 4339–4346.
J. P. Ferris, F. R. Antonucci, J. Chem. Soc. Chem. Commun.
1972, 126–127.
148
www.eurjoc.org
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2008, 136–149