Please do not adjust margins
Journal of Materials Chemistry C
Page 7 of 9
DOI: 10.1039/C8TC00353J
Journal Name
ARTICLE
Ruben and W. Wernsdorfer, Science, 2014, 344, 1135; (e) M.
Atanasov, D. Aravena, E. Suturina, E. Bill, D. Maganas and F.
Neese, Coord. Chem. Rev., 2015, 289-290, 177; (f) J. J.
Baldov&, S. Cardona-Serra, A. Gaita-AriÇo and E. Coronado,
Adv. Inorg. Chem., 2017, 69, 213; (g) S. Demir, J. M. Zadrozny
and J. R. Long, Chem. Eur. J., 2014, 20, 9524; (h) K. S.
Figure 7. ESP(equ)/ESP(ax) vs Ueff, TIRREV (up) and –log A (down)
for complexes 1’, 1, 2’, 2 and 3.
of the equatorial ESP contributions from Cl (0.28 a.u.) to Br
(0.24 a.u.). Although the introduction of equatorial Br instead
of Cl will lead to larger deviation from ideal PBP, the longer Dy-
Br distance, as well as lower magnitude of the negative charge
of Br, will reduce ESP(equ) a lot and then lead to significant
Pedersen, J. Bendix and R. Clérac, Chem. Commun., 2014, 50
,
4396; (i) S. T. Liddle and J. van Slageren, Chem. Soc Rev.,
2015, 44, 6655.
M. N. Leuenberger and D. Loss, Nature, 2001, 410, 789.
L. Bogani and W. Wernsdorfer, Nat. Mater., 2008, 7, 179.
M. Mannini, F. Pineider, P. Sainctavit, C. Danieli, E. Otero, C.
Sciancalepore, A. M. Talarico, M.-A. Arrio, A. Cornia, D.
2
3
4
increase of the axiality as well as SMM properties of
2. Above
all, the excess of axial electrostatic repulsion over the
equatorial one should be a useful guide for the design of high-
performance PBP DyIII-SIMs.
Gatteschi and R. Sessoli, Nat. Mater., 2009,
(a) G. A. Craig and M. Murrie, Chem. Soc. Rev., 2015, 44
2135; (b) J. M. Frost, K. L. M. Harriman and M. Murugesu,
Chem. Sci., 2016, , 2470; (c) J. Liu, Y.-C. Chen, J.-L. Liu, V.
8, 194.
5
,
It is highly worthy of denoting that, both the ab initio
parameters and ESP analysis of
3
are consistent with the
7
Vieru, L. Ungur, J.-H. Jia, L. F. Chibotaru, Y. Lan, W.
Wernsdorfer, S. Gao, X.-M. Chen and M.-L. Tong, J. Am.
Chem. Soc., 2016, 138, 5441; (d) Y.-C. Chen, J.-L. Liu, L. Ungur,
J. Liu, Q.-W. Li, L.-F. Wang, Z.-P. Ni, L. F. Chibotaru, X.-M.
Chen and M.-L. Tong, J. Am. Chem. Soc., 2016, 138, 2829; (e)
Y.-S. Ding, N. F. Chilton, R. E. P. Winpenny and Y.-Z. Zheng,
Angew. Chem. Int. Ed., 2016, 128, 16305; (f) F.-S. Guo, B. M.
Day, Y.-C. Chen, M.-L. Tong, A. Mansikkamäki and R. A.
Layfield, Angew. Chem. Int. Ed., 2017, 56, 11445; (g) C. A. P. G
oodwin, F. Ortu, D. Reta, N. F. Chilton and D. P. Mills, Nature,
2017, 548, 439; (h) S. K. Gupta, T. Rajeshkumar, G. Rajaraman
corresponding experimental observations (Figures 7, S26-S32).
That is to say, a high excess of axial electrostatic repulsion is
also achieved in
3. The local geometry of 3, being clearly
different from the other four DyIII-SIMs, is quite close to the
ideal PBP geometry of D5h (Table S4). Thus, the design strategy
from the aspect of ESP is not controversial to the strategy
based on symmetry and we think these two strategies are
actually consistent with each other.
and R. Murugavel, Chem. Sci., 2016,
(a) M. Li, H.-P. Wu, Q. Yang, H.-S, Ke, B. Yin, Q. Shi, W.-Y.
Wang, Q. Wei, G. Xie and S.-P. Chen, Chem. Eur. J., 2017, 23
1; (b) M. W. Willer, J. R. Long, C. C. McLauchlan and R. H.
Holm, Inorg. Chem., 1998, 37, 328.
L. Ungur and L. F. Chibotaru, Inorg. Chem., 2016, 55, 10043
S. G. McAdams, A.-M. Ariciu, A. K. Kostopoulos, J. P. S. Walsh
and F. Tuna, Coord. Chem. Rev., 2017, 346, 216.
7, 5181.
Conclusions
6
,
In summary, under the strategy of pursuing high excess of axial
electrostatic repulsion, two high-performance PBP DyIII-SIMs
were synthesized and characterized. The importance of this
strategy is further verified by ab initio calculations and ESP
analysis. This strategy is effective for both clearly distorted and
nearly ideal PBP geometries and it should play an important
role in the design of high-performance PBP DyIII-SIMs. Beyond
that, in an effort to emulate the favourable SIM properties
observed in this system, and encouraged by ab initio
predictions, various groups (H2bbpen, containing electron-
donating (-OCH3, -C(CH3)3) in the 4-position of the phenol
rings) have pursued the use of ligands with even more high-
performance PBP DyIII-SIMs is ongoing in our groups.
7
8
9
J. D. Rinehart and J. R. Long, Chem. Sci., 2011, 2, 2078.
10 R. Orbach, Proc. R. Soc. London Ser. A, 1961, 264, 458.
11 K. N. Shrivastava, Phys. Status Solidi B, 1983, 117, 437.
12 D. Casanova, M. Llunell, P. Alemany and S. Alvarez, Chem.
Eur. J., 2005, 11, 1479.
13 (a) Bruker, SMART, SAINT, and XPREP: Area Detector Control
and Data Integration and Reduction Software, Bruker Analy
tical X-ray Instruments Inc., Madison, WI, 1995; (b) G. M.
Sheldrick, SADABS, Program for Empirical Absorption
Correction, Univ ersity of Göttingen, Göttingen, 1996.
14 JG. M. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112.
15 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard
and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339.
16 (a) J. Luzon and R. Sessoli, Dalton Trans., 2012, 41, 13556; (b)
L. F. Chibotaru, Struct. Bonding, 2015, 164, 185; (c) A.
Abragam and B. Bleaney, Electron Paramagnetic Resonance
of Transition Ions, Clarendon Press, Oxford, 1970; (d) D. Arav
ena and E. Ruiz, Inorg. Chem., 2013, 52, 13770; (e) J. M. Frost,
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
K. L. M. Harriman and M. Murugesu, Chem. Sci., 2016,
2470; (f) Y. F. Deng, T. Han, B. Yin and Y. Z. Zheng, Inorg.
Chem. Front., 2017, , 1141.
7 ,
We gratefully acknowledge financial support from the National
Natural Science Foundation of China (grant nos. 21673180,
21373162, 21673181, 21727805, 21473135 and 21103137).
4
17 (a) B. O. Roos, P. R. Tay lor and P. E. M. Siegbahn, Chem.
Phys., 1980, 48, 157; (b) F. Aquilante, J. Autschbach, R. K.
Carlson, L. F. Chibotaru, M.G.Delcey , L. De Vico, I. F. Galvan,
N. Ferre, L. M. Frutos, L. Gagliardi, M.Garavelli, A. Giussani, C.
E. Hoyer, G. Li Manni, H. Lischka, D. Ma, P. A. Malmqvist, T.
Muller, A. Nenov , M. Olivucci, T. B. Pedersen, D. Peng, F.
Plasser, B. Pritchard, M. Reiher, I. Rivalta, I. Schapiro, J.
Segarra-Marti, M. Stenrup, D. G. Truhlar, L. Ungur, A.
Valentini, S. Vancoillie, V. Veryazov, V. P. Vysotskiy, O.
Notes and references
1
(a) R. Sessoli, D. Gatteschi, A. Caneschi and M. A. Novak,
Nature, 1993, 365, 141; (b) A. Caneschi, D. Gatteschi, R.
Sessoli, A. L. Barra, L. C. Brunel and M. Guillot, J. Am. Chem.
Soc., 1991, 113, 5873; (c) D. Gateschi, R. Sessoli and J. Villain,
Molecular Nanomagnets, Oxford University Press, Oxford,
2006; (d) S. Thiele, F. Balestro, R. Ballou, S. Klyatskaya, M.
Weingart and F. Zapata, R. Lindh, J. Comput. Chem., 2016, 37,
506; (c) P. A. Malmqv ist, B. O. Roos and B. Schimmelpf ennig,
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins