C O M M U N I C A T I O N S
Scheme 2. Plausible Mechanism of the Catalytic Reaction
Table 1. Pd-Nanoparticles Catalyzed Regioselective RSH
Addition to Alkynes under Microwave Heatinga
alkanethiol, respectively. Synthesized Pd nanoparticles with organic
ligands showed promising results for the application in catalysis.
Supporting Information Available: Experimental procedures,
compounds characterization data, details of SEM and X-ray studies.
References
(1) For representative examples, see: (a) Law, M.; Greene, L. E.; Johnson,
J. C.; Saykally, R.; Yang, P. D. Nat. Mater. 2005, 4, 455. (b) Baker, G.
A. AdV. Mater. 2005, 17, 639. (c) Gao, P. X.; Ding, Y.; Mai, W. J.;
Hughes, W. L.; Lao, C. S.; Wang, Z. L. Science 2005, 309, 1700. (d)
Kolmakov, A.; Moskovits, M. Annu. ReV. Mater. Res. 2004, 34, 151. (e)
Wang, Z. L. Annu. ReV. Phys. Chem. 2004, 55, 159. (f) Law, M.; Sirbuly,
D. J.; Johnson, J. C.; Goldberg, J.; Saykally, R. J.; Yang, P. D. Science
2004, 305, 1269. (g) Li, Q.; Gong, X.; Wang, C.; Wang, J.; Ip, K.; Hark,
S. AdV. Mater. 2004, 16, 1436. (h) Yan, H. Q.; Johnson, J.; Law, M.; He,
R.; Knutsen, K.; McKinney, J. R.; Pham, J.; Saykally, R.; Yang, P. D.
AdV. Mater. 2003, 15, 1907. (i) Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.;
Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. AdV. Mater. 2003, 15,
353. (j) Duan, X.; Huang, Y.; Agarwal, R.; Lieber, C. M. Nature (London)
2003, 421, 241. (k) Wang, Z. L. AdV. Mater. 2003, 15, 432. (l) Gudiksen,
M. S.; Lauhon, L. J.; Wang, J.; Smith, D. C.; Lieber, C. M. Nature
(London) 2002, 415, 617. (m) Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science
2001, 291, 1947. (n) Wang, Z. L.; Gao, R. P.; Pan, Z. W.; Dai, Z. R.
AdV. Eng. Mater. 2001, 3, 657. (o) Hu, J.; Odom, T. W.; Lieber, C. M.
Acc. Chem. Res. 1999, 32, 435. (p) Astruc, D. Inorg. Chem. 2007, 46,
1884.
(2) (a) Nanoparticles and Nanostructured Films. Preparation, Characteriza-
tion and Applications; Fendler, J. H., Ed.; Wiley-VCH, Weinheim,
Germany, 1998. (b) Nanoparticles: From Theory to Application; Schmid,
G., Ed.; Wiley-VCH, Weinheim, Germany, 2004.
a RSH (1.1 mmol), alkyne (1 mmol), γ-terpinene (1 mmol), Pd(OAc)2
(5 mol %) under microwave heating. b Alkyne conversion determined by
NMR and isolated yield of 5 (in parenthesis). c The 5/(6 +7) ratio.
(3) (a) Astruc, D.; Lu, F.; Aranzaes, J. R. Angew. Chem., Int. Ed. 2005, 44,
7852. (b) Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chem.
ReV. 2005, 105, 1025. (c) Grunes, J.; Zhu, J.; Somorjai, G.A. Chem.
Commun. 2003, 2257. (d) Bell, A. T. Science 2003, 299, 1688. (e) Johnson,
B. F. G. Top. Catal. 2003, 24, 147. (f) Moreno-Manas, M.; Pleixats, R.
Acc. Chem. Res. 2003, 36, 638. (g) Buchachenko, A. L. Russ. Chem. ReV.
2003, 72, 375. (h) Roucoux, A.; Schulz, J.; Patin, H. Chem. ReV. 2002,
102, 3757. (i) Moiseev, I. I.; Vargaftik, M. N. Russ. J. Gen. Chem. 2002,
72, 512. (j) El-Sayed, M. A. Acc. Chem. Res. 2001, 34, 257. (k) Crooks,
R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L. K. Acc. Chem. Res.
2001, 34, 181. (l) Bukhtiyarov, V. I.; Slin’ko, M. G. Russ. Chem. ReV.
2001, 70, 147.
(4) (a) Ananikov, V. P.; Orlov, N. V.; Beletskaya, I. P.; Organometallics
2006, 25, 1970. (b) Ananikov, V. P.; Orlov, N. V.; Beletskaya, I. P.;
Organometallics 2007, 26, 740.
(5) In the reactions of interest alkanethiols are dramatically less reactive
compared to arylthiols because of stronger S-H bond and lower acidity
(see section 3 of the Supporting Information for BDE and pKa values).
At the moment only quite expensive homogeneous Rh systems were
reported to catalyze the transformations of that type involving AlkS groups,
see: (a) Arisawa, M.; Yamaguchi, M. Org. Lett. 2001, 3, 763. (b) Circu,
V.; Fernandes, M. A.; Carlton, L. Polyhedron 2003, 22, 3293. (c) Cao,
C.; Fraser, L. R.; Love, J. A. J. Am. Chem. Soc. 2005, 127, 17614. (d)
Misumi, Y.; Seino, H.; Mizobe, Y. J. Organomet. Chem. 2006, 691, 3157.
(6) For ArSH addition to alkynes see: (a) Malyshev, D. A.; Scott, N. M.;
Marion, N.; Stevens, E. D.; Ananikov, V. P.; Beletskaya, I. P.; Nolan, S.
P. Organometallics 2006, 25, 4462. (b) Ananikov, V. P.; Malyshev, D.
A.; Beletskaya, I. P.; Aleksandrov, G. G.; Eremenko, I. L. AdV. Synth.
Catal. 2005, 347, 1993. (c) Han, L.-B.; Zhang, C.; Yazawa, H.; Shimada,
S. J. Am. Chem. Soc. 2004, 126, 5080. (d) Ogawa, A. J. Organomet. Chem.
2000, 611, 463. (e) Ogawa, A.; Ikeda, T.; Kimura, K.; Hirao, T. J. Am.
Chem. Soc. 1999, 121, 5108. (f) Backvall, J.-E.; Ericsson, A. J. Org. Chem.
1994, 59, 5850. (g) Kuniyasu, H.; Ogawa, A.; Sato, K.; Ryu, I.; Kambe,
N.; Sonoda, N.; J. Am. Chem. Soc. 1992, 114, 5902. (h) See also refs 4a
and 5c.
Figure 2. Molecular structure (a) and crystal packing (b) of 5d‚HOOC-
COOH.
a supramolecular structure has never been observed in the case of
aryl derivatives studied earlier.6
The mechanism of the catalytic reaction (Scheme 2) involves
alkyne coordination to form 8 (step i), followed by alkyne insertion
into the Pd-S bond leading to vinylic derivative 9 (ii). The final
stage of the catalytic cycle is protonolysis by RSH, which releases
5 and regenerates the active form of the catalyst 4 (iii). The proposed
mechanism has been confirmed by a series of stoichiometric
reactions performed with the isolated catalysts 4a and 4b.10
To summarize, the developed system is suitable for size- and
shape-controlled synthesis of nanoparticles achieved via the usage
of a solution of Pd precursor in alkyne and varying the nature of
(7) See section 2 of the Supporting Information for experimental details.
(8) See the Supporting Information for detailed description.
(9) Description of both procedures is given in section 4 of the Supporting
Information.
(10) Mechanistic study is described in section 5 of the Supporting Information.
JA071727R
9
J. AM. CHEM. SOC. VOL. 129, NO. 23, 2007 7253