C O M M U N I C A T I O N S
the aqueous solution of Pb(ClO4)2 is added to 1 in acetonitrile,
neither the binding strength nor the magnitude of fluorescence
enhancement is affected, whereas the stability of 1‚Pb2+ complex
is attenuated (2 orders of magnitude weaker) when 5% of water-
acetonitrile is used as the solvent for both of Pb(ClO4)2 and 1. It is
worth noting that the fluorescence enhancement is still quite
pronounced (I/I0 ) 6) in this organic/aqueous mixture.
In summary, the new fluorescent chemosensor 1 exhibits a high
affinity and selectivity for Pb2+. The remarkable fluorescent
response to Pb2+ binding is unprecedented. Our future efforts will
be focused on developing fluorescent chemosensors, which can
function in aqueous systems with high affinities for Pb2+. In
addition, a fluorescent chemosensor library17 for other metal ions
will be established by appending versatile molecular recognition
units, for example, different crown ethers, to the current molecular
design.
Acknowledgment. We thank National Science Council, Taiwan
for financial support.
Supporting Information Available: Selected synthetic procedures
and structural characterization for 1, metal binding profiles, binding
isotherms, as well as photospectroscopic data of titrations (PDF). This
Figure 2. Absorption and fluorescence spectra of 1 (1 × 10-5 M in
acetonitrile) in the presence of 1 mM of Mg2+ upon addition of increasing
amounts of Pb2+ (Dashed line corresponds to the 1‚Pb2+ complex without
Mg2+). Excitation is at 411 nm.
References
(1) Rifai, N.; Cohen, G.; Wolf, M.; Cohen, L.; Faser, C.; Savory, J.; DePalma,
L. Ther. Drug Monit. 1993, 15, 71 and references therein.
(2) (a) de Silva, A. P.; Fox, D. B.; Huxley, A. J. M.; Moody, T. S. Coord.
Chem. ReV. 2000, 205, 41-57. (b) Amendola, V.; Fabbrizzi, L.; Licchelli,
M.; Mangano, C.; Pallavicini, P.; Parodi, L.; Poggi, A. Coord. Chem.
ReV. 2000, 192, 649-669. (c) Valeur, B.; Leray, I. Coord. Chem. ReV.
2000, 205, 3-40. (d) Fluorescent Chemosensors for Ion and Molecule
Recognition; Czarnik, A. W., Ed.; American Chemical Society: Wash-
ington, DC, 1993.
(3) (a) Hirano, T.; Kikuchi, K.; Urano, Y.; Higuchi, T.; Nagano, T. Angew.
Chem., Int. Ed. 2000, 39, 1052-1054. (b) Burdette, S. C.; Walkup, G.
K.; Spingler, B.; Tsien, R. Y.; Lippard, S. J. J. Am. Chem. Soc. 2001,
123, 7831-7841.
Figure 3. The fluorescence intensity change profile of 1 (1 × 10-5 M in
acetonitrile) in the presence of selected metal ions. Excitation is at 411
nm, and emission is monitored at 491 nm.
in which 1 is first incubated with various metal ions at their
saturation concentrations, and Pb2+ is added until the total
concentration of Pb2+ reaches saturation concentration (100 µM).
Although absorption bands provide the most structurally relevant
information about the binding, the absorption as well as fluorescence
spectra are exploited to monitor the competition events. Figure 2
illustrates the changes of these spectra upon the addition of
increasing amounts of Pb2+ in the presence of 1 mM of Mg2+. The
absorption spectrum of 1 ‚ Mg2+ is consistent with the two carbonyl
groups of the fluorophore taking part in the binding, regardless of
the presence of the monoazacrown moiety. As the Pb2+ concentra-
tion increases, the characteristic absorption at 478 nm for 1‚Mg2+
complex gradually decreases, and a new characteristic absorption
at 428 nm, responsible for 1‚Pb2+ complex, starts to appear with a
concomitant fluorescence increase. Notably, Pb2+ ions do not simply
replace Mg2+ in the same binding sites but form a new fluorescent
complex.
(4) McClure, D. S. J. Chem. Phys. 1952, 20, 682-686.
(5) Varnes, A. W.; Dodson, R. B.; Wehry, E. L. J. Am. Chem. Soc. 1972, 94,
946-950.
(6) Deo, S.; Godwin, H. A. J. Am. Chem. Soc. 2000, 122, 174-175.
(7) (a) Addleman, R. S.; Bennett, J.; Tweedy, S. H.; Elshani, S.; Wai, C. M.
Talanta 1998, 46, 573-581. (b) Shen, Y.; Sullivan, B. P. J. Chem. Educ.
1997, 74, 685-689. (c) Beeby, A.; Parker, D.; Williams, J. A. G. J. Chem.
Soc., Perkin Trans. 2 1996, 1565-1579. (d) Padilla-Tosta, M. E.; Lloris,
J. M.; Mart´ınez-Ma´n˜ez, R.; Marcos, M. D.; Miranda, M. A.; Pardo, T.;
Sanceno´n, F.; Soto, J. Eur. J. Inorg. Chem. 2001, 1475-1482. (e) Xia,
W.-S.; Schmehl, R. H.; Li, C.-J.; Mague, J. T.; luo, C.-P. Guldi, D. M. J.
Phys. Chem. B 2002, 106, 833-843.
(8) Specht, D. P.; Martic, P. A.; Farid, S. Tetrahedron 1982, 38, 1203-1211.
(9) (a) Schuster, G. B.; Gompel, J. V. J. Org. Chem. 1987, 52, 1465-1468.
(b) Farid, S.; Specht, D. P.; Martic, P. A. Tetrahedron 1982, 38, 1203-
1211.
(10) Detailed photospectroscopic data are included in Supporting Information.
(11) (a) Roshal, A. D.; Grigorovich, A. V.; Doroshenko, A. O.; Pivovarenko,
V. G.; Demchenko, A. P. J. Phys. Chem. A 1998, 102, 5907-5914. (b)
Bourson, J.; Pouget, J.; Valeur, B. J. Phys. Chem. 1993, 97, 4552-4557.
(c) Brunet, E.; Alonso, M. T.; Juanes, O.; Sedano, R.; Rodr´ıguez-Ubis, J.
C. Tetrahedron Lett. 1997, 38, 4459-4462.
(12) Connors, K. A. Binding Constants; Wiley-Interscience: New York, 1987;
pp 24-28.
(13) Our recent studies reveal that monoaza-18-crown-6 ketocoumarin forms
a 2:2 complex with Pb2+ and two ligands are disposed in an antiparallel
fashion as determined by X-ray crystallography.
(14) 2:2 metal complexes have been observed in biscrown-distyrybenzene
systems by forming intermolecular sandwich between crown units and
metal ions. See: ref 7e.
(15) (a) Nizhegorodov, N. I.; Downey, W. S. J. Phys. Chem. 1994, 98, 5639-
5643 and references therein. (b) McFarland, S. A.; Finney, N. S. J. Am.
Chem. Soc. 2001, 123, 1260-1261. (c) McFarland S. A.; Finney, N. S.
J. Am. Chem. Soc. 2002, 124, 1178-1179.
The selectivity of 1 for Pb2+ over Ca2+, Zn2+, Cd2+, Fe2+, Mn2+
and Hg2+ is particularly important because Pb2+ targets both Ca2+
,
-
and Zn2+-binding sites in vivo16 and Cd2+, Hg2+, Fe2+, and Mn2+
are metal ions that frequently interfere with Pb2+ analysis. The
competition-based fluorescence intensity profiles for these metal
ions are shown in Figure 3. On the basis of the photospectroscopic
data, it seems that Zn2+ and Mn2+ behave like Mg2+, whereas Cd2+
,
Hg2+, and Fe2+ act differently. Cd2+, Hg2+, and Pb2+ are probably
bound in the same binding site with different affinities, and the
replacement occurs once the higher-affinity metal ion is added in
the solution. No interference is observed while performing titrations
with Pb2+ in a complex matrix containing 50-fold excess of
univalent metal ions.
(16) (a) Goldstein, G. W. Neurotoxicology 1993, 14, 97-102. (b) Simons, T.
J. B. Neurotoxicology 1993, 14, 77-86. (c) Goyer, R. A. EnViron. Health
Perspect. 1990, 86, 177-182.
(17) (a) Czarnik, A. W. Chem. Biol. 1995, 2, 423-428. (b) Chen, C.-T.;
Wagner, H.; Still, W. C. Science 1998, 279, 851-853. (c) Schneider, S.
N.; O’Neil, E. V.; Anslyn, E. V. J. Am. Chem. Soc. 2000, 122, 542-543.
(d) Szurdoki, F.; Ren, D.; Walt, D. R. Anal. Chem. 2000, 72, 5250-5257.
We also tested the possibility of using fluorescent chemosensor
1 for determining Pb2+ concentration in aqueous solution. When
JA025710E
9
J. AM. CHEM. SOC. VOL. 124, NO. 22, 2002 6247