Published on Web 03/22/2007
Total Synthesis of Dimeric Pyrrole-Imidazole Alkaloids:
Sceptrin, Ageliferin, Nagelamide E, Oxysceptrin, Nakamuric
Acid, and the Axinellamine Carbon Skeleton
Daniel P. O’Malley, Ke Li, Michael Maue, Alexandros L. Zografos, and
Phil S. Baran*
Contribution from the Department of Chemistry, The Scripps Research Institute,
10550 North Torrey Pines Road, La Jolla, California 92037
Received December 17, 2006; E-mail: pbaran@scripps.edu
Abstract: The dimeric pyrrole imidazole natural products are a growing class of alkaloids with exotic
connectivity, unique topologies, high nitrogen content, and exciting bioactivities. This full account traces
the evolution of a strategy that culminated in the first total syntheses of several members of this family,
including sceptrin, ageliferin, nagelamide E, nakamuric acid (and its methyl ester), and oxysceptrin. Details
on the fascinating conversion of sceptrin to ageliferin, which has been used to produce gram quantities of
this sensitive natural product, are provided. In addition, the first enantioselective total synthesis of sceptrin
and ageliferin are reported by programming the fragmentation of an oxaquadricyclane. A hallmark of our
approach to this family of alkaloids is the minimal use of protecting groups despite the presence of 10
nitrogen atoms in the target compounds. Thus, the fundamental chemistry of the 2-aminoimidazole
heterocycle was explored without masking its innate reactivity. Insights gained during these explorations
led to total syntheses of oxysceptrin and nakamuric acid and a successful construction of the carbon skeleton
of axinellamine.
Introduction
two hymenidin (2) subunits. The family of dimeric pyrrole-
imidazole alkaloids has since grown to include the ageliferins
The mysteries of natural product biosynthesis can often be
solved like jigsaw puzzles if enough “pieces”, or members of a
related family, can be found. Contemplating the relationship
between members of a family of related natural products can
often guide chemists to a reasonable retrosynthesis.1 Even when
these presumed “biosynthetic” relationships do not reflect the
true metabolic pathway followed in the source organism, they
can provide a useful heuristic for synthetic analysis, as was the
case with Woodward’s hypothesis for the biosynthesis of
strychnine.2 This synthetic program toward the dimeric pyrrole-
imidazole alkaloids (Figure 1) has been inspired by the unique
hypothesis that sceptrin (1) could serve as a precursor to other
related alkaloids.
(3),4 axinellamines (4-7),5 palau’amines,6 nagelamides,7 mas-
sadine (8),8 and the noncyclized mauritiamine.9 The recent
isolation of the “tetrameric” stylissadine A (9) and tetrabromo-
styloguanidine (10) by Ko¨ck10a,b and Quinn10c holds the promise
of even more exciting discoveries to come.
In addition to their ornate structures, these molecules also
possess a diverse range of potentially useful biological proper-
ties. Sceptrin is a potent antibacterial as well as an antiviral,
antihistiminic, and antimuscarinic agent.3,6b Ageliferin also
(4) (a) Keifer, P. A.; Koker, M. E. S.; Schwartz, R. E.; Hughes, R. G., Jr.;
Rittschof, D.; Rinehart, K. L. 26th Interscience Conference on Antimicrobial
Agents and Chemotherapy, New Orleans, Sep. 28-Oct. 1, 1986, No. 1281.
(b) Rinehart, K. L. Pure Appl. Chem. 1989, 61, 525-528. (c) Kobayashi,
J.; Tsuda, M.; Murayama, T.; Nakamura, H.; Ohizuma, Y.; Ishibashi, M.;
Iwamura, M.; Ohta, T.; Nozoe, S. Tetrahedron 1990, 46, 5579-5586. (d)
Williams, D. H.; Faulkner, D. J. Tetrahedron 1996, 52, 5381-5390.
(5) Urban, S.; Leone, P. de A.; Carroll, A. R.; Fechner, G. A.; Smith, J.; Hooper,
J. N. A.; Quinn, R. J. J. Org. Chem. 1999, 64, 731-735.
(6) (a) Kinnel, R. B.; Gehrken, H.-P.; Scheuer, P. J. J. Am. Chem. Soc. 1993,
115, 3376-3377. (b) Kinnel, R. B.; Gehrken, H.-P.; Swali, R.; Skoropowski,
G.; Scheuer, P. J. J. Org. Chem. 1998, 63, 3281-3286.
(7) Endo, T.; Tsuda, M.; Okada, T.; Mitsuhashi, S.; Shima, H.; Kikuchi, K.;
Mikami, Y.; Fromont, J.; Kobayashi, J. J. Nat. Prod. 2004, 67, 1262-
1267; we are grateful to Prof. Kobayashi for providing NMR spectra of
compound 43.
(8) Nishimura, S.; Matsunaga, S.; Shibazaki, M.; Suzuki, K.; Furihata, K.; van
Soest, R. W. M.; Fusetani, N. Org. Lett. 2003, 5, 2255-2257.
(9) Tsukamoto, S.; Kato, H.; Hirota, H.; Fusetani, N. J. Nat. Prod. 1996, 59,
501-503.
(10) (a) Grube, A.; Ko¨ck, M. Org. Lett. 2006, 8, 4675-4678. (b) Grube, A.;
Ko¨ck, M. Angew. Chem., Int. Ed. 2007, 46, 2320-2324. (c) Buchanan,
M. S.; Carroll, A. R.; Addepalli, R.; Avery, V. M.; Hooper, J. N. A.; Quinn,
10.1021/jo062007q).
The isolation of sceptrin (1) in 1981 by Faulkner and Clardy3a
was the first report of a pyrrole-imidazole alkaloid containing
(1) For some examples, see: (a) Nicolaou, K. C.; Snyder, S. A. Classics in
Total Synthesis II; Wiley-VCH: Weinheim, 2003; p 639. For recent
examples from this laboratory, see: (b) Baran, P. S.; Shenvi, R. A. J. Am.
Chem. Soc. 2006, 128, 14028-14029. (c) Baran, P. S.; Hafensteiner, B.
D.; Ambhaikar, N. B.; Guerrero, C. A.; Gallagher, J. J. Am. Chem. Soc.
2006, 128, 8678-8693. (d) Baran, P. S.; Richter, J. M. J. Am. Chem. Soc.
2005, 127, 15394-15396.
(2) For a detailed discussion of the “Woodward Fission”, see: Berson, J. A.
Chemical DiscoVery and the Logicians’ Program; Wiley-VCH: Weinheim,
2003; Chapter 8 and references therein.
(3) (a) Walker, R. P.; Faulkner, D. J.; Van Engen, D.; Clardy, J. J. Am. Chem.
Soc. 1981, 103, 6772-6773. (b) Cafieri, F.; Carnuccio, R.; Fattorusso, E.;
Taglialatela-Scafati, O.;Vallefuoco, T. Biorg. Med. Chem. Lett. 1997, 7,
2283-2288. (c) Shen, X.; Perry, P. L.; Dunbar, C. D.; Kelly-Borges, M.;
Hamann, M. T. J. Nat. Prod. 1988, 61, 1302-1303. (d) Rosa, R.; Silva,
W.; Escalona de Motta, G.; Rodriguez, A. D.; Morales, J. J.; Ortiz, M.
Experientia 1992, 885-887.
9
4762
J. AM. CHEM. SOC. 2007, 129, 4762
10.1021/ja069035a CCC: $37.00 © 2007 American Chemical Society