LETTER
CAC in Total Synthesis: Curvicollides
123
(4) (a) Abraham, L.; Körner, M.; Hiersemann, M. Tetrahedron
Lett. 2004, 3647. (b) Abraham, L.; Körner, M.; Schwab, P.;
Hiersemann, M. Adv. Synth. Catal. 2004, 1281.
In order to verify the assumed relative configuration of
(2R,3R,4R)-11, the d-lactone (2R,3R,4R)-12 was prepared
in situ under the conditions of the oxidative removal15 of
the benzyl protecting group (Equation 1). NOESY on the
d-lactone 12 provided NOE that unambiguously support
our mechanism-based assignment of the relative configu-
ration of (2R,3R,4R)-11.
(c) Hiersemann, M.; Abraham, L. Eur. J. Org. Chem. 2002,
1461. (d) Abraham, L.; Czerwonka, R.; Hiersemann, M.
Angew. Chem. Int. Ed. 2001, 4700.
(5) Prepared according to: Gois, P. M. P.; Afonso, C. A. M. Eur.
J. Org. Chem. 2003, 3798.
(6) Miller, D. J.; Moody, C. J. Tetrahedron 1995, 51, 10811.
(7) Gao, Y.; Klunder, J. M.; Hanson, R. M.; Masamune, H.; Ko,
S. Y.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765.
(8) (E,Z)-4: 1H NMR (300 MHz, CDCl3): d = 1.96 (d, 3 H,
J = 7.4 Hz), 3.78 (s, 3 H), 4.09 (d, 2 H, J = 4.2 Hz), 4.31 (d,
2 H, J = 4.0 Hz), 4.50 (s, 2 H), 5.36 (q, 1 H, J = 7.4 Hz),
5.78–5.81 (m, 2 H), 7.31–7.34 (m, 5 H). 13C NMR (75.5
MHz, CDCl3): d = 12.6, 51.8, 65.0, 65.8, 72.4, 112.9, 127.7,
127.8, 128.0, 128.4, 129.7, 138.0, 144.8, 164.1. IR (neat):
3035–3030, 2950–2860, 1725 cm–1. Anal. Calcd for
C16H20O4: C, 69.54; H, 7.30. Found: C, 69.21; H, 7.39.
(9) Preparative HPLC: Nu 50-7, 32 × 250 mm, heptane–EtOAc
9:1, 30 ml/min, tR (Z) = 7 min, tR (E) = 9 min, baseline
separation with 400 mg/injection.
(10) The sequence of OH-insertion and olefination was originally
developed and utilized by Ganem and Berchtold for the
synthesis of chorismate und its derivatives, see: (a) Ganem,
B.; Ikota, N.; Muralidharan, V. B.; Wade, W. S.; Young, S.
D.; Yukimoto, Y. J. Am. Chem. Soc. 1982, 104, 6787.
(b) Pawlak, J. L.; Berchtold, G. A. J. Org. Chem. 1987, 52,
1765. (c) Lesuisse, D.; Berchtold, G. A. J. Org. Chem. 1988,
53, 4992. (d) Wood, H. B.; Buser, H. P.; Ganem, B. J. Org.
Chem. 1992, 57, 178. (e) Mattia, K. M.; Ganem, B. J. Org.
Chem. 1994, 59, 720. (f) For an intramolecular application,
see: Kim, S.; Sutton, S. C.; Guo, C.; LaCour, T. G.; Fuchs,
P. L. J. Am. Chem. Soc. 1999, 121, 2056.
DDQ, CH2Cl2
buffer (pH 7)
O
OH
O
OMe
r.t., 24 h
OH
O
BnO
(2R,3R,4R)-11
(2R,3R,4R)-12 (81%)
Equation 1 Validation of the relative configuration of 11 is based
on NOESY studies of the d-lactone (2R,3R,4R)-12.
The synthesis of the key building block 2 was concluded
by a five-step sequence from 11 as depicted in Scheme 4.
Thus, the protection of the secondary hydroxyl group as a
silyl ether16 was followed by the reduction of the ester
function to the primary alcohol and a subsequent Dess–
Martin oxidation17 to afford the aldehyde 13. Grignard re-
action between the aldehyde 13 and methylmagnesium
iodide followed by Dess–Martin oxidation17 provided the
desired ketone 2.18
1. TBSOTf, 2,6-lutidine
CH2Cl2, 0 °C
11
O
OTBS
2. DIBAL-H, CH2Cl2
–78 °C to r.t.
BnO
13 (76%)
3. Dess–Martin periodinane
CH2Cl2, 0 °C to r.t.
(11) Hiersemann, M. Synthesis 2000, 1279.
(12) Evans, D. A.; Miller, S. J.; Lectka, T.; von Matt, P. J. Am.
Chem. Soc. 1999, 121, 7559.
1. MeMgI, Et2O
–78 °C to r.t.
(13) (3R,4R)-3: 1H NMR (300 MHz, CDCl3): d = 1.08 (d, 3 H,
J = 6.9 Hz), 2.83 (m, 1 H), 3.31–3.39 (m, 2 H), 3.45 (ddAB, 1
H, J = 9.6, 4.9 Hz), 3.62 (s, 3 H), 4.33 (dAB, 1 H, J = 12.0
Hz), 4.37 (dAB, 1 H, J = 12.0 Hz), 5.12–5.17 (m, 2 H), 5.45–
5.58 (m, 1 H), 7.22–7.34 (m, 5 H). 13C NMR (75.5 MHz,
CDCl3): d = 14.4, 43.1, 48.4, 52.5, 72.4, 72.7, 118.7, 127.6,
128.3, 135.3, 137.5, 161.5, 195.6. IR (neat): n = 3300–3150,
2950–2870, 1728 cm–1. Anal. Calcd for C16H20O4: C, 69.54;
H, 7.30. Found: C, 69.28; H, 7.38. [a]25D +39.7 (c 0.89,
CHCl3).
O
2. Dess–Martin periodinane
CH2Cl2, 0 °C to r.t.
OTBS
BnO
2 (79%)
Scheme 4 Final steps toward the desired building block 2.
In conclusion, we have established a highly enantioselec-
tive access to the ketone 2, the central C8–C12 synthon in
the projected total synthesis of the curvicollides 1a–c. We
have demonstrated the efficiency of the catalytic asym-
metric Claisen rearrangement (CAC) in target-oriented
synthesis. Based on the availability of the building block
2, efforts aimed at the completion of the total synthesis of
the curvicollides 1a–c are currently underway in our
laboratory.
(14) Mengel, A.; Reiser, O. Chem. Rev. 1999, 99, 1191.
(15) Oikawa, Y.; Yoshioka, T.; Yonemitsu, O. Tetrahedron Lett.
1982, 23, 885.
(16) Corey, E. J.; Cho, H.; Rücker, C.; Hua, D. H. Tetrahedron
Lett. 1981, 22, 3455.
(17) (a) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155.
(b) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113,
7277. (c) Ireland, R. E.; Liu, L. J. Org. Chem. 1993, 58,
2899.
(18) (3R,4R,5R)-2: 1H NMR (300 MHz, CDCl3): d = 0.00 (s, 3
H), 0.05 (s, 3 H), 0.75 (d, 3 H, J = 7.1 Hz), 0.94 (s, 9 H),
2.03–2.12 (m, 1 H), 2.14 (s, 3 H), 2.71–2.79 (m, 1 H), 3.46
(ddAB, 1 H, J = 9.7, 7.2 Hz), 3.53 (ddAB, 1 H, J = 9.7, 6.1 Hz),
3.79 (d, 1 H, J = 7.7 Hz), 4.45 (dAB, 1 H, J = 12.1 Hz), 4.55
(dAB, 1 H, J = 12.1 Hz), 5.04–5.14 (m, 2 H), 5.71 (ddd, 1 H,
J = 17.2, 10.5, 8.8 Hz), 7.29–7.41 (m, 5 H). 13C NMR (75.5
MHz, CDCl3): d = –5.0, –4.8, 11.3, 18.1, 25.3, 25.8, 37.0,
42.8, 71.6, 72.6, 81.4, 117.5, 127.5, 127.6, 128.3, 136.2,
138.5, 211.7. IR (neat): n = 3100–3060, 2970–2860, 1716
cm–1. Anal. Calcd for C22H36O3Si: C, 70.16; H, 9.63. Found:
C, 70.30; H, 9.72. [a]25D +38.3 (c 0.90, CHCl3).
Acknowledgment
Financial support by the DFG and the FCI is gratefully acknowled-
ged. M.H. is a Heisenberg Fellow of the DFG.
References and Notes
(1) Che, Y.; Gloer, J. B.; Wicklow, D. T. Org. Lett. 2004, 1249.
(2) Ziegler, F. E. Chem. Rev. 1988, 1423.
(3) For reviews concerning the asymmetric Claisen rearrange-
ment, see: (a) Enders, D.; Knopp, M.; Schiffers, R.
Tetrahedron: Asymmetry 1996, 7, 1847. (b) Ito, H.;
Taguchi, T. Chem. Soc. Rev. 1999, 28, 43. (c)Nubbemeyer,
U. Synthesis 2003, 961.
Synlett 2006, No. 1, 121–123 © Thieme Stuttgart · New York