1-Phenyl-1H-1,2,3-triazoles as GABA Receptor Antagonists
J. Agric. Food Chem., Vol. 54, No. 4, 2006 1371
(18) Ozoe, Y.; Akamatsu, M. Non-competitve GABA antagonist:
probing the mechanisms of their selectivity for insect versus
mammalian receptors. Pest Manag. Sci. 2001, 57, 923-931.
(19) Ozoe, Y.; Kajiki, R. Potency and selectivity of phenyltriazoles
in GABA receptors: effects of substituents on the inhibition of
[3H]EBOB binding. Pestic. Sci. Soc. Jpn. Annu. Meeting Abstr.
2002, 116.
Supporting Information Available: Spectroscopic data for
phenyltriazoles and X-ray crystallographic data for 9. This
material is available free of charge via the Internet at http://
pubs.acs.org.
LITERATURE CITED
(20) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
A stepwise Huisgen cycloaddition process: copper(I)-catalyzed
regioselective “ligation” of azides and terminal alkynes. Angew.
Chem., Int. Ed. 2002, 41, 2596-2599.
(1) Bormann, J. The ‘ABC’ of GABA receptors. Trends Pharmacol.
Sci. 2000, 21, 16-19.
(2) Rabow, L. E.; Russek, S. J.; Farb, D. H. From ion currents to
genomic analysis: recent advances in GABAA receptor research.
Synapse 1995, 21, 189-274.
(3) Hosie, A. M.; Aronstein, K.; Sattelle, D. B.; ffrench-Constant,
R. H. Molecular biology of insect neuronal GABA receptors.
Trends Neurosci. 1997, 20, 578-583.
(4) Mezler, M.; Mu¨ller, T.; Raming, K. Cloning and functional
expression of GABAB receptors from Drosophila. Eur. J.
Neurosci. 2001, 13, 477-486.
(5) Gant, D. B.; Chalmers, A. E.; Wolff, M. A.; Hoffman, H. B.;
Bushey, D. F. Fipronil: action at the GABA receptor. ReV.
Toxicol. 1998, 2, 147-156.
(6) Zhao, X.; Yeh, J. Z.; Salgado, V. L.; Narahashi, T. Fipronil is a
potent open channel blocker of glutamate-gated chloride channels
in cockroach neurons. J. Pharmacol. Exp. Ther. 2004, 310, 192-
201.
(7) Buckingham, S. D.; Hosie, A. M.; Roush, R. L.; Sattelle D. B.
Actions of agonists and convulsant antagonists on a Drosophila
melanogaster GABA receptor (Rdl) homo-oligomer expressed
in Xenopus oocytes. Neurosci. Lett. 1994, 181, 137-140.
(8) Hosie, A. M.; Baylis, H. A.; Buckingham, S. D.; Sattelle, D. B.
Actions of the insecticide fipronil, on dieldrin-sensitive and
-resistant GABA receptors of Drosophila melanogaster. Br. J.
Pharmacol. 1995, 115, 909-912.
(21) Deng, Y.; Palmer, C. J.; Casida, J. E. House fly head GABA-
gated chloride channel: four putative insecticide binding sites
differentiated by [3H]EBOB and [35S]TBPS. Pestic. Biochem.
Physiol. 1993, 47, 98-112.
(22) Squires, R. F.; Casida, J. E.; Richardson, M.; Saederup, E. [35S]-
t-Butylbicyclophosphorothionate binds with high affinity to brain-
specific sites coupled to γ-aminobutyric acid-A and ion recog-
nition sites. Mol. Pharmacol. 1983, 23, 326-336.
(23) Cole, L. M.; Casida, J. E. GABA-gated chloride channel: binding
site for 4′-ethynyl-4-n-[2,3-3H2]propylbicycloorthobenzoate ([3H]-
EBOB) in vertebrate brain and insect head. Pestic. Biochem.
Physiol. 1992, 44, 1-8.
(24) Bradford, M. M. A rapid and sensitive method for the quantitation
of microgram quantities of protein utilizing the principle of
protein-dye binding. Anal. Biochem. 1976, 72, 248-254.
(25) Alonso, G.; Garc´ıa-Lo´pez, M. T.; Garuc´ıa-Mun˜oz, G.; Madron˜-
ero, R.; Rico, M. Heterocyclic N-glycosides. VI. The reaction
of glycosyl azides with propiolic acid and methyl propiolate. J.
Heterocycl. Chem. 1970, 7, 1269-1272.
(26) Raghavendra, M. S.; Lam, Y. Regiospecific solid-phase synthesis
of substituted 1,2,3-triazoles. Tetrahedron Lett. 2004, 45, 6129-
6132.
(27) Wedegaertner, D. K.; Kattak, R. K.; Harrison, I.; Cristie, S. K.
Aryl azide-allene cycloaddition. The contrasting behavior of two
simple allenes, 1,2-cyclononadiene and 1,2-propadiene. J. Org.
Chem. 1991, 56, 4463-4467.
(28) Tornoe, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on
solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed
1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org.
Chem. 2002, 67, 3057-3064.
(29) Clark, M.; Cramer, R. D., III The probability of chance
correlation using partial least squares (PLS). Quantum Struct.-
Act. Relat. 1993, 12, 137-145.
(30) Sieghart, W.; Sperk G. Subunit composition, distribution and
function of GABAA receptor subtypes. Curr. Top. Med. Chem.
2002, 2, 795-816.
(31) Slany, A.; Zezula, J.; Tretter, V.; Sieghart, W. Rat â3 subunits
expressed in human embryonic kidney 293 cells form high
affinity [35S]-t-butylbicyclophosphorothionate binding sites modu-
lated by several allosteric ligands of γ-aminobutyric acid type
A receptors. Mol. Pharmacol. 1995, 48, 385-391.
(32) Wooltorton J. R. A.; Moss, S. J.; Smart, T. G. Pharmacological
and physiological characterization of murine homomeric â3
GABAA receptors. Eur. J. Neurosci. 1997, 9, 2225-2235.
(33) Ratra, G. S.; Casida, J. E. GABA receptor subunit composition
relative to insecticide potency and selectivity. Toxicol. Lett. 2001,
122, 215-222.
(34) ffrench-Constant, R. H.; Rocheleau, T. A.; Steichen, J. C.;
Chalmers, A. E. A point mutation in a Drosophila GABA
receptor confers insecticide resistance. Nature 1993, 363, 449-
451.
(35) Perret, P.; Sarda, X.; Wolff, M.; Wu, T.-T.; Bushey, D.; Goeldner,
M. Interaction of non-competitive blockers within the γ-ami-
nobutyric acid type A chloride channel using chemically reactive
probes as chemical sensors for cysteine mutants. J. Biol. Chem.
1999, 274, 25350-25354.
(9) Bloomquist, J. R. Cyclodiene resistance at the insect GABA
receptor/chloride channel complex confers broad cross resistance
to convulsants and experimental phenylpyrazole insecticides.
Arch. Insect Biochem. Physiol. 1994, 26, 69-79.
(10) von Keyserlingk, H. C.; Willis, R. J. The GABA activated Cl-
channel in insects as target for insecticidal action: a physiological
study. In Neurotox ’91sMolecular Basis of Drug and Pesticide
Action; Duce, I. R., Ed.; Elsevier: London, U.K., 1992; pp 79-
104.
(11) Bascal, Z.; Holden-Dye, L.; Willis, R. J.; Smith, S. W. G.;
Walker, R. J. Novel azole derivatives are antagonists at the
inhibitory GABA receptor on the somatic muscle cells of the
parasitic nematode Ascaris suum. Parasitology 1996, 112, 253-
259.
(12) Cole, L. M.; Nicholson, R. A.; Casida, J. E. Action of
phenylpyrazole insecticides at the GABA-gated chloride channel.
Pestic. Biochem. Physiol. 1993, 46, 47-54.
(13) Ratra, G. S.; Kamita, S. G.; Casida, J. E. Role of human GABAA
receptor â3 subunit in insecticide toxicity. Toxicol. Appl.
Pharmacol. 2001, 172, 233-240.
(14) Pullman, D. A.; Smith, I. H.; Larkin, J. P.; Casida, J. E.
Heterocyclic insecticides acting at the GABA-gated chloride
channel: 5-alkyl-2-arylpyrimidines and -1,3-thiazines. Pestic. Sci.
1996, 46, 237-245.
(15) Whittle, A. J. 3-Aryl pyrimidinones: a novel class of potent
insecticides. In AdVances in the Chemistry of Insect Control III;
Briggs, G. G., Ed.; Royal Society of Chemistry: Cambridge,
U.K., 1994; pp 156-170.
(16) Ozoe, Y.; Yagi, K.; Nakamura, M.; Akamatsu, M.; Miyake, T.;
Matsumura, F. Fipronil-related heterocyclic compounds: struc-
ture-activity relationships for interaction with γ-aminobutyric
acid- and voltage-gated ion channels and insecticidal action.
Pestic. Biochem. Physiol. 2000, 66, 92-104.
(17) Whittle, A. J.; Fitzjohn, S.; Mullier, G.; Pearson, D. P. J.; Perrior,
T. R.; Taylor, R.; Salmon, R. The use of computer-generated
electrostatic surface maps for the design of new ‘GABA-ergic’
insecticides. Pestic. Sci. 1995, 44, 29-31.