1600
S. K. Mandal, S. C. Roy / Tetrahedron Letters 47 (2006) 1599–1601
O
Cl
OH
Cp2TiCl,
THF, rt
O
O
NaOEt, EtOH
rt, 1 h
72%
1a
6
OH
O
OH
O
+
+
two other unidentified products (25%)
7 (44%)
8 (11%)
Scheme 2.
Cp2TiCl in THF under argon afforded6 the eight-mem-
bered ether 4a in moderate yield (52%) along with the
reduced product 5a (9–12%) and an unidentified product
(18–20%). The methyl substituted derivative 4b (58%)
was prepared in a similar manner.
N.; Khan, T. A.; Scho¨nebeck, F.; Murphy, J. A.; Payne, A.
H.; Williams, A. C. Tetrahedron Lett. 2005, 46, 4027, and
references cited therein; (o) Pirrung, F. O. H.; Hiemstra, H.;
Speckamp, W. N.; Kaptein, B.; Schoemaker, H. E. Tetra-
hedron 1994, 50, 12415, and references cited therein; (p)
Lee, E.; Yoon, C. H.; Lee, T. H.; Kim, S. Y.; Ha, T. J.;
Sung, Y.-S.; Park, S.-H.; Lee, S. J. Am. Chem. Soc. 1998,
120, 7469.
On the other hand, 2-allyl phenol 1a was transformed
into 6 in a single-step using epichlorohydrin (Scheme
2). Reductive opening of the epoxide 6 using Cp2TiCl
in THF under argon afforded the eight-membered ether
7 (44%) along with the reduced product 8 (11%) and two
other unidentified products (25%).
2. (a) Giese, B. Radicals in Organic Synthesis: Formation of
Carbon–Carbon Bonds; Pergamon Press: Oxford, 1986; (b)
Motherwell, W. B.; Crich, D. Free Radical Chain Reactions
in Organic Synthesis; Academic Press: London, 1991; (c)
Curran, D. P.; Porter, N. A.; Giese, B. Stereochemistry of
Radical Reactions; VCH: Weinheim, 1996; (d) Linker, T.;
Schmittel, M. Radikaleund Radikalionen in der Organischen
Synthese; Wiley-VCH: Weinheim, 1998.
3. (a) Mandal, P. K.; Maiti, G.; Roy, S. C. J. Org. Chem.
1998, 63, 2829; (b) Roy, S. C.; Rana, K. K.; Guin, C. J.
Org. Chem. 2002, 67, 3242; (c) Banerjee, B.; Roy, S. C.
Synthesis 2005, 2913; (d) Banerjee, B.; Roy, S. C. Eur. J.
Org. Chem. 2006, 489.
In conclusion, we have developed a new methodology to
construct eight-membered ring ethers via radical cycliza-
tion of epoxides using titanocene(III) chloride as the
radical source. Further studies are in progress to extend
this protocol for the construction of higher-membered
heterocyclic rings and its application to the synthesis
of natural products and will be reported elsewhere.
4. Rajanbabu, T. V.; Nugent, W. A. J. Am. Chem. Soc. 1994,
116, 986, and references cited therein.
5. Justicia, J.; Oller-Lopez, J. L.; Campana, A. G.; Oltra, J. E.;
Cuerva, J. M.; Bunuel, E.; Cardenas, D. J. J. Am. Chem.
Soc. 2005, 127, 14911.
Acknowledgements
6. Typical experimental procedure for the radical cyclization
reaction: a solution of titanocene dichloride (498 mg,
2 mmol) in dry THF (25 mL) was stirred with activated
zinc dust (393 mg, 6 mmol) for 1 h under argon. The
resulting green solution was then transferred through a
cannula to a dropping funnel and was added dropwise to a
magnetically stirred solution of epoxy propargylic ether 3a
(188 mg, 1 mmol) in dry THF (35 mL) at room temperature
under argon over 8 h. The reaction mixture was stirred for
an additional 6 h and then decomposed with a saturated
aqueous solution of NaH2PO4. The volatiles were removed
under reduced pressure and the residue obtained was
extracted with diethyl ether (3 · 50 mL). The combined
ether layer was washed with brine (20 mL) and dried
(Na2SO4). Removal of the solvent under reduced pressure
afforded the product which was chromatographed over
silica gel (60–120 mesh) using 10% ethyl acetate in light
petroleum as eluent to yield 4a (52%) as a viscous oil along
with the reduced product 5a (12%) and another unidentified
product (18%). Spectral data of 4a: IR (neat): 3398, 2920,
S.K.M. thanks CSIR, New Delhi, for awarding the
fellowship.
References and notes
1. (a) Tuhina, K.; Bhowmik, D. R.; Venkateswaran, R. V.
Chem. Commun. 2002, 634; (b) Yamaguchi, S.; Tsuchida,
N.; Miyazawa, M.; Hirai, Y. J. Org. Chem. 2005, 70, 7505;
(c) Crimmins, M. T.; McDougall, P. J.; Emmitte, K. A.
Org. Lett. 2005, 7, 4033, and references cited therein; (d)
Holt, D. J.; Barker, W. D.; Jenkins, P. R.; Panda, J.;
Ghosh, S. J. Org. Chem. 2000, 65, 482, and references cited
therein; (e) Stefinovic, M.; Snieckus, V. J. Org. Chem. 1998,
63, 2808; (f) Van Otterlo, W. A. L.; Pathak, R.; de Koning,
´
´
C. B. Synlett 2003, 12, 1859; (g) Prie, G.; Prevost, N.; Twin,
H.; Fernandes, F. A.; Hayes, J.; Shipman, M. Angew.
Chem., Int. Ed. 2004, 43, 6517; (h) Sudha, A. V. R. L.;
Nagarajan, M. Chem. Commun. 1996, 1359; (i) Dzwiniel, T.
L.; Stryker, J. M. J. Am. Chem. Soc. 2004, 126, 9184; (j)
Nandi, A.; Mukhopadhyay, R.; Chattopadhyay, P. J.
Chem. Soc., Perkin Trans. 1 2001, 3346; (k) Ghosh, K.;
Ghosh, A. K.; Ghatak, U. R. J. Chem. Soc., Chem.
Commun. 1994, 629; (l) Shanmugam, P.; Rajasingh, P.
Tetrahedron Lett. 2005, 46, 3369; (m) Wang, J.; Li, C. J.
Org. Chem. 2002, 67, 1271; (n) Lang, S.; Corr, M.; Muir,
2856, 1490, 1207, 1006, 777 cmÀ1 1H NMR (CDCl3,
;
300 MHz): d 2.58 (dd, J = 15.7, 10.9 Hz, 1H), 3.22 (dd,
J = 15.7, 4.9 Hz, 1H), 3.64–3.79 (m, 3H), 4.46 (dd, J = 15.5,
4.8 Hz, 1H), 4.94 (dd, J = 15.5, 2.4, Hz, 1H), 5.43–5.49 (m,
1H), 5.55–5.62 (m, 1H), 7.00–7.08 (m, 3H), 7.15–7.21 (m,
1H); 13C NMR (CDCl3, 75 MHz): d 35.6, 40.7, 67.2, 72.7,
122.7, 124.0, 126.7, 127.5, 130.7, 133.1, 133.4, 156.9. HRMS