Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
8
While the stability of the excited azide might be seen counter-
intuitive, there are multiple previous studies implying the
stability of triplet-sensitized azides. In many cases, quantum
yields for the decomposition of triplet-sensitized azides were
very low and the non-zero conversion had been attributed to the
Rev., 2013, 113, 5322; (b) D. M. ScDhOulI:tz10a.1n0d39T/C.7CPC. 0Y48o5o2nA,
Science, 2014, 343, 985; (c) J. R. Chen, X. Q. Hu, L. Q. Lu and
W. J. Xiao, Chem. Soc. Rev., 2016, 45, 2044; (d) M. S.
Oderinde, M. Frenette, D. W. Robbins, B. Aquila and J. W.
Johannes, J. Am. Chem. Soc., 2016, 138, 1760; (e) M. S.
Oderinde, N. H. Jones, A. Juneau, M. Frenette, B. Aquila, S.
Tentarelli, D. W. Robbins and J. W. Johannes, Angew. Chem.
Int. Ed., 2016, 55, 13219; (f) M. S. Oderinde, A. Varela-
Alvarez, B. Aquila, D. W. Robbins and J. W. Johannes, J. Org.
Chem., 2015, 80, 7642; (g) M. S. Oderinde, J. W. Johannes, N.
H. Avci, C. Olsson and B. Nelson, Org. Synth. 2017, 94, 77.
J. R. Chen, X. Y. Yu and W. J. Xiao, Synthesis, 2015, 47, 604.
inadvertent direct irradiation from high energy UV light
21
sources.7,
Also, non-nitrene reaction mechanism had been
proposed for the intermolecular reactions of triplet-sensitized
azides with molecular oxygen22 or hydrogen atom donors.7c
The final step, hydrogen atom transfer, had been examined
9
with a 1:1 mixture of deuterated and non-deuterated
N-
10 (a) C. P. Hadjiantonioumaroulis, A. J. Maroulis, A. Terzis and
D. Mentzafos, J. Org. Chem., 1992, 57, 2252; (b) V. Bizet and
C. Bolm, Eur. J. Org. Chem., 2015, 2854.
arylmethacrylamide subjected to the photocatalytic reaction with
benzoyl azide (Scheme 2c). As a result, no H/D scrambling was
observed, indicating an intramolecular hydrogen atom transfer in
the last step. In an experiment with repeated on-off cycling of
visible light irradiation, a complete quenching of reactivity was
observed in the absence of light.20 Although this result may not
be a definitive evidence in excluding a radical chain pathway,
any chain propagation process, if there is, must be short-lived.23
In conclusion, we have developed a mild and efficient
synthetic route to biologically important oxindole and
spirooxindole scaffolds enabled by the visible light
11 (a) J. Liu, S. Mandel, C. M. Hadad and M. S. Platz, J. Org.
Chem., 2004, 69, 8583; (b) B. Capuano, I. T. Crosby, E. J.
Lloyd and J. E. Neve, Aust. J. Chem., 2007, 60, 214.
12 (a) K. U. Clauss, K. Buck and W. Abraham, Tetrahedron, 1995,
51, 7181; (b) W. Abraham, M. Buchallik, Q. Q. Zhu and W.
Schnabel, J. Photochem. Photobiol., A, 1993, 71, 119.
13 I. Woelfle, B. Sauerwein, T. Autrey and G. B. Schuster,
Photochem. Photobiol., 1988, 47, 497.
14 (a) M. Wakizaka, T. Matsumoto, R. Tanaka and H. C. Chang,
Nat Commun., 2016, 7; (b) J. Jin and D. W. C. MacMillan,
Nature, 2015, 525, 87.
15 The structures of the isolated products, 3a (CCDC 1505485)
and 5d (CCDC 1505486), were unambiguously confirmed by
an X-ray crystallographic analyses. For details, please see the
supporting information.
16 (a) G. Bencivenni, L.-Y. Wu, A. Mazzanti, B. Giannichi, F.
Pesciaioli, M.-P. Song, G. Bartoli and P. Melchiorre, Angew.
Chem. Int. Ed., 2009, 48, 7200; (b) T. Piou, L. Neuville and J.
Zhu, Angew. Chem. Int. Ed., 2012, 51, 11561; (c) B. Tan, N. R.
Candeias and C. F. Barbas, J. Am. Chem. Soc., 2011, 133, 4672;
(d) B. M. Trost, D. A. Bringley, T. Zhang and N. Cramer, J.
Am. Chem. Soc., 2013, 135, 16720.
17 M. Abe, Chem. Rev., 2013, 113, 7011.
18 M. Nechab, S. Mondal and M. P. Bertrand, Chem. - Eur. J.
2014, 20, 16034.
photocatalytic reaction of benzoyl azides and
N-
arylmethacrylamides. A triplet energy transfer process was
proposed to operate by visible light photocatalysis with
[Ir{dF(CF3)ppy}2(dtbbpy)]PF6. The cyclization proceeds
smoothly over a broad range of substrates and reactants without
involving a competitive decomposition side pathway. The
observed stability and reactivity of the presumed reactive
intermediate, triplet benzoyl azides, would be a promise for
further synthetic studies of acyl azides.
This research was supported by the Institute for Basic
Science (IBS-R010-D1) in the Republic of Korea. The authors
are thankful to Dr. Jung Hee Yoon (IBS) and Dr. Ha Jin Lee (the
Western Seoul Center of Korea Basic Science Institute) for XRD
crystallographic analysis.
,
19 DFT calculation studies for the proposed reaction pathway
(Scheme 2a) had been performed and the results agree with the
proposed mechanism. For details, please see the supporting
information.
20 For details, please see the supporting information.
21 (a) F. D. Lewis and W. H. Saunders, J. Am. Chem. Soc., 1968,
90, 7031; (b) E. P. Kyba and R. A. Abramovitch, J. Am. Chem.
Soc., 1980, 102, 735; (c) J. S. Swenton, T. J. Ikeler and B. H.
Williams, J. Am. Chem. Soc., 1970, 92, 3103; (d) T. Kobayashi,
H. Ohtani, K. Suzuki and T. Yamaoka, J. Phys. Chem., 1985,
89, 776; (e) A. K. Schrock and G. B. Schuster, J. Am. Chem.
Soc., 1984, 106, 5228; (f) E. Leyva, M. S. Platz, G. Persy and
J. Wirz, J. Am. Chem. Soc., 1986, 108, 3783.
Notes and references
1
(a) R. Hili and A. K. Yudin, Nat. Chem. Biol., 2006, 2, 284; (b)
A. Ricci, Amino Group Chemistry: From Synthesis to the Life
Sciences, Wiley-VCH, Weinheim, 2008.
2
3
4
(a) T. Curtius, Ber. Dtsch. Chem. Ges., 1890, 23, 3023; (b) E.
Eibler and J. Sauer, Tetrahedron Lett., 1974, 15, 2569.
E. Brachet, T. Ghosh, I. Ghosh and B. Konig, Chem. Sci., 2015,
6
, 987.
22 (a) T. Y. Liang and G. B. Schuster, J. Am. Chem. Soc., 1987,
109, 7803; (b) R. A. Abramovitch and S. R. Challand, J. Chem.
S. O. Scholz, E. P. Farney, S. Kim, D. M. Bates and T. P. Yoon,
Angew. Chem. Int. Ed., 2016, 55, 2239.
Soc., Chem. Commun., 1972,
23 E. Arceo, I. D. Jurberg, A. Álvarez-Fernández and P.
Melchiorre, Nat. Chem., 2013, , 750.
8, 964.
5 (a) J. Ryu, J. Kwak, K. Shin, D. Lee and S. Chang, J. Am. Chem.
Soc., 2013, 135, 12861; (b) K. Shin, J. Ryu and S. Chang, Org.
Lett., 2014, 16, 2022; (c) K. Shin, H. Kim and S. Chang, Acc.
Chem. Res., 2015, 48, 1040.
5
6
T. Autrey and G. B. Schuster, J. Am. Chem. Soc., 1987, 109,
5814.
7
(a) E. A. Pritchina, N. P. Gritsan, A. Maltsev, T. Bally, T.
Autrey, Y. L. Liu, Y. H. Wang and J. P. Toscano, Phys. Chem.
Chem. Phys., 2003, 5, 1010; (b) M. Inagaki, T. Shingaki and T.
Nagai, Chem. Lett., 1982, 11, 9; (c) M. E. Sigman, T. Autrey
and G. B. Schuster, J. Am. Chem. Soc., 1988, 110, 4297.
4 | J. Name., 2012, 00, 1‐3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins