Lanthanoid Aryloxides with Flexible Radial Arms
FULL PAPER
3.72 (s, 8 H, CH2), 6.72–6.77 (m, 2 H, ArH), 6.82–6.87 (m, 4 H, obtained free of charge from The Cambridge Crystallographic
ArH), 6.89–7.13 (m, 20 H, ArH) ppm. IR (Nujol, cm–1): ν = Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
˜
1601 m, 1456 s, 1363 s, 1230 s, 1074 w, 1028 w, 1006 w, 950 m,
923 m, 889 w, 830 w, 820 w, 794 w, 755 s, 698 s. Attempts to form
this compound in the absence of mercury with heating up to 250 °C
Acknowledgments
(2,6-dibenzylphenol slowly decomposes above 260 °C, so was not
The authors acknowledge the ARC Special Research Centre for
Green Chemistry at Monash University for financial support and
postgraduate scholarship (K. M. P.), and CSIRO for supporting C.
R. S. on secondment.
heated any further) resulted in the isolation of unreacted starting
material.
[Yb2(Odbp)6] (4): 2,6-Dibenzylphenol (0.30 g, 1.09 mmol) was
treated directly with ytterbium metal (0.04 g, 0.23 mmol) in the
presence of 2 drops of mercury. The reactants were sealed under
vacuum in a glass Carius tube. After 2 d of heating at 150 °C, deep
orange/red crystals were grown upon cooling. Unreacted ligand
was removed by a hexane wash and the remaining material charac-
terised. Yield: 0.18 g (78%). M.p. 78–80 °C. C60H51O3Yb (993.05):
[1] D. C. Bradley, R. C. Mehrotra, I. P. Rothwell, A. Singh, Alkoxo
and Aryloxo Derivatives of Metals, Academic Press, San Diego,
2001.
[2] G. B. Deacon, S. Nickel, P. MacKinnon, E. R. T. Tiekink, Aust.
J. Chem. 1990, 43, 1245–1257.
calcd. Yb 17.42; found 18.11. IR (Nujol, cm–1): ν = 1601 m, 1459 s,
˜
[3] a) D. M. Barnhart, D. L. Clark, J. C. Gordon, J. C. Huffman,
R. L. Vincent, J. G. Watkin, B. D. Zwick, Inorg. Chem. 1994,
33, 3487–3497; b) R. J. Butcher, D. L. Clark, S. K. Grumbine,
R. L. Vincent-Hollis, B. L. Scott, J. G. Watkin, Inorg. Chem.
1995, 34, 5468–5476.
[4] a) G. B. Deacon, P. E. Fanwick, A. Gitlits, I. P. Rothwell, B. W.
Skelton, A. H. White, Eur. J. Inorg. Chem. 2001, 1505–1514; b)
G. B. Deacon, C. M. Forsyth, R. Harika, P. C. Junk, J. W.
Ziller, W. J. Evans, J. Mater. Chem. 2004, 14, 3144–3149.
[5] a) G. B. Deacon, C. M. Forsyth, P. C. Junk, B. W. Skelton,
A. H. White, Chem. Eur. J. 1999, 5, 1452–1459; b) G. B. Dea-
con, T. Feng, C. M. Forsyth, A. Gitlits, D. C. R. Hockless, Q.
Shen, B. W. Skelton, A. H. White, J. Chem. Soc., Dalton Trans.
2000, 961–966.
[6] a) H. D. Amberger, H. Reddmann, C. Guttenberger, B. Un-
recht, L. Zhang, C. Apostolidis, O. Walter, B. Kanellokopulos,
Z. Anorg. Allg. Chem. 2003, 629, 1522–1534; b) H. A. Stecher,
A. Sen, A. L. Rheingold, Inorg. Chem. 1988, 27, 1130–1132; c)
M. F. Lappert, A. Singh, R. G. Smith, Inorg. Synth. 1990, 27,
164–168; d) P. B. Hitchcock, M. F. Lappert, A. Singh, J. Chem.
Soc., Chem. Commun. 1983, 1499–1501; e) P. B. Hitchcock,
M. F. Lappert, R. G. Smith, Inorg. Chim. Acta 1987, 139, 183–
184; f) J. R. van den Hende, P. B. Hitchcock, M. F. Lappert, J.
Chem. Soc., Chem. Commun. 1994, 1413–1414; g) J. R.
van den Hende, P. B. Hitchcock, S. A. Holmes, M. F. Lappert,
J. Chem. Soc., Dalton Trans. 1995, 1435–1440.
[7] a) G. B. Deacon, T. Feng, P. C. Junk, B. W. Skelton, A. H.
White, J. Chem. Soc. Dalton Trans. 1997, 1181–1186; b) G. B.
Deacon, A. Gitlits, P. C. Junk, B. W. Skelton, A. H. White, Z.
Anorg. Allg. Chem. 2005, 631, 861–865.
[8] D. L. Clark, J. G. Watkin, J. C. Huffman, Inorg. Chem. 1992,
31, 1554–1556.
[9] a) D. L. Clark, R. V. Hollis, B. L. Scott, J. G. Watkin, Inorg.
Chem. 1996, 35, 667–674; b) D. L. Clark, G. B. Deacon, T.
Feng, R. V. Hollis, B. L. Scott, B. W. Skelton, J. G. Watkin,
A. H. White, J. Chem. Soc., Chem. Commun. 1996, 1729–1730.
[10] L.-L. Zhang, Y.-M. Yao, Y.-J. Luo, Q. Shen, J. Sun, Polyhedron
2000, 19, 2243–2247.
[11] P. Thuery, M. Nierlich, J. Harrowfield, M. Ogden, Phenoxide
Complexes of f-Elements, in: Calixarenes (Eds.: Z. Asfari, V.
Bohmer, J. Harrowfield, J. Vicens), Kluwer Academic Publish-
ers, Netherlands, 2001, p. 561–582.
1365 s, 1230 s, 1074 w, 1029 w, 950 m, 923 m, 889 w, 829 w, 820 w,
794 w, 755 s, 698 s. Attempts to form this compound in the absence
of mercury with heating up to 250 °C (2,6-dibenzylphenol slowly
decomposes above 260 °C, so was not heated any further) resulted
in the isolation of unreacted starting material.
X-ray Crystallography: Crystalline samples of compounds 1, 2 and
4 were mounted on glass fibres in viscous paraffin oil at –150 °C
(123 K). Crystal data were obtained using an Enraf–Nonius Kappa
CCD. An empirical absorption correction (SORTAV)[17] was ap-
plied to all data. Structural solution and refinement were carried
out using SHELXL-97[18] and SHELXS-97[19] utilising the graphi-
cal interface X-Seed.[20] Crystal data and refinement parameters for
all complexes are compiled below.
[La2(Odbp)6]
(1):
C120H102La2O6,
M
=
1917.84,
¯
0.25×0.20×0.20 mm, triclinic, space group P1 (No. 2), a =
13.4374(5), b = 13.9358(5), c = 26.7937(12) Å, α = 98.976(1), β =
95.312(2), γ = 108.065(4)°, V = 4658.3(3) Å3, Z = 2, Dc = 1.367 g/
cm3, F000 = 1968, Nonius Kappa CCD, Mo-Kα radiation, λ =
0.71073 Å, T = 123(2) K, 2θmax = 56.5°, 53379 reflections collected,
21478 unique (Rint = 0.2204). Final GooF = 0.872, R1 = 0.0748,
wR2 = 0.1217, R indices based on 7518 reflections with I Ͼ 2σ(I)
(refinement on F2), 1147 parameters, 0 restraints. Lp and absorp-
tion corrections applied, µ = 0.963 mm–1.
[Eu2(Odbp)4]
(2):
C80H68Eu2O4,
M
=
1397.26,
¯
0.10×0.10×0.10 mm, triclinic, space group P1 (No. 2), a =
10.0458(12), b = 13.136(2), c = 23.773(3) Å, α = 103.448(11), β =
94.188(9), γ = 94.379(7)°, V = 3028.9(8) Å3, Z = 2, Dc = 1.532 g/
cm3, F000 = 1412, Nonius Kappa CCD, Mo-Kα radiation, λ =
0.71073 Å, T = 123(2) K, 2θmax = 55.9°, 19023 reflections collected,
10992 unique (Rint = 0.1653). Final GooF = 0.930, R1 = 0.0993,
wR2 = 0.2022, R indices based on 4255 reflections with I Ͼ 2σ(I)
(refinement on F2), 775 parameters, 66 restraints. Lp and absorp-
tion corrections applied, µ = 2.106 mm–1.
[Yb2(Odbp)6] (4): C120H102O6Yb2, M = 1986.10, orange, rectangu-
¯
lar, 0.20×0.10×0.10 mm, triclinic, space group P1 (No. 2), a =
13.364(3), b = 13.475(3), c = 26.927(5) Å, α = 98.44(3), β =
97.42(3), γ = 104.68(3)°, V = 4569.2(16) Å3, Z = 2, Dc = 1.444 g/
cm3, F000 = 2020, Nonius Kappa CCD, Mo-Kα radiation, λ =
0.71073 Å, T = 123(2) K, 2θmax = 56.5°, 57274 reflections collected,
21355 unique (Rint = 0.0743). Final GooF = 1.108, R1 = 0.0993,
wR2 = 0.2751, R indices based on 16207 reflections with I Ͼ 2σ(I)
(refinement on F2), 1153 parameters, 42 restraints. Lp and absorp-
tion corrections applied, µ = 2.094 mm–1.
[12] G. B. Deacon, C. M. Forsyth, S. Nickel, J. Organomet. Chem.
2002, 647, 50–60.
[13] R. D. Shannon, Acta Crystallogr., Sect. A 1976, 32, 751–767.
[14] a) M. Niemeyer, Eur. J. Inorg. Chem. 2001, 1969–1981; b) G. B.
Deacon, C. M. Forsyth, P. C. Junk, Eur. J. Inorg. Chem. 2005,
817–821.
[15] a) E. C. Horning, J. Org. Chem. 1945, 10, 263–266; b) M. L.
Cole, L. T. Higham, P. C. Junk, K. M. Proctor, J. L. Scott,
C. R. Strauss, Inorg. Chim. Acta, in press.
[16] J. E. Cosgriff, G. B. Deacon, B. M. Gatehouse, Aust. J. Chem.
1993, 46, 1881–1896.
CCDC-274466 (1), -274467 (2) and -274468 (3) contain the supple-
mentary crystallographic data for this paper. These data can be
Eur. J. Inorg. Chem. 2005, 4138–4144
© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
4143