A R T I C L E S
Su et al.
Table 1. Photophysical Data for Benzophosphole Derivatives 2, 3,
and 4
Figure 1. Organophosphorus moieties used to construct π-conjugated
systems.
(Figure 1). However, before 2000 few oligomers6a and polymers6b
featuring this P unit were known. In recent years, the family of
phosphole-containing conjugated systems has been considerably
extended with the synthesis of various mixed oligomers and
polymers.7 Moieties B,8a-c C,8d,e and D8f,g leading to P analogues
of poly(aniline) and poly(para-phenylene-vinylene), respectively,
have also been recently investigated.
a
b
b
c
Td10
C)
λmax
λem
φfb
Ep1
/2
(
°
(nm)
log
ꢀ
(nm)
(%)
(eV)
2
3
4
213
220
220
332
330
333
2.9
2.9
3.0
366
366
366
4.2
0.2
13.4
-1.93
-1.92
-1.80d
a TGA, 10% weight loss. b Measured in CH2Cl2, fluorescence quantum
yield relative to quinine sulfate. c In CH2Cl2, referenced to SCE. Epc.
d
The structural diversity of these building blocks illustrates
the impact of phosphorus chemistry for the construction of
conjugated macromolecules. Furthermore, one appealing prop-
erty of these P building blocks is that they possess reactive
phosphorus centers potentially allowing direct access to a range
of novel π-conjugated systems. This possibility has been fully
exploited for phosphole-based derivatives. We have shown that
chemical modifications of the phosphorus atoms allow a fine-
tuning of the optical and electrochemical properties of phos-
phole-based π-conjugated systems.7a-f In other words, starting
from one phosphole-containing π-conjugated system, it is
possible to readily access a family of derivatives with different
physical characteristics. The next key challenge was to show
that this unique possibility could be used to tailor conjugated
materials for optoelectronic functions. For this purpose, we have
selected OLEDs because this type of device demands multi-
functional properties from a single organic material (thermal
stability, luminescence efficiency, hole and electron injection,
and transport capabilities...), which are difficult to optimize. In
this paper, we report a full detailed study on the synthesis, use,
and tailoring of phosphole-based oligomers and of their gold
complexes as advanced materials for single- and multilayer
OLEDs.9 The conceptual design and specific properties that
directly result from the presence of the P atom will be illustrated.
We will show that exploiting the reactivity of the P atom is a
key to tuning and to optimizing the material performances and
also to avoiding or to inducing the aggregation of these
P-chomophores in the solid state.
(4) (a) Yamagushi, S.; Tamao, K. Chem. Lett. 2005, 34, 2-7. (b) Yamagushi,
S.; Tamao, K. J. Chem. Soc., Dalton Trans. 1998, 3693-3702. (c) Chan,
L.-H.; Lee, R.-H.; Hsieh, C.-F.; Yeh, H.-C.; Chen, C.-T. J. Am. Chem.
Soc. 2002, 124, 6469-6479. (d) Yamagushi, S.; Endo, T.; Uchida, M.;
Izumizawa, T.; Furukawa, K.; Tamao, K. Eur. J. Chem. 2000, 6, 1683-
1692. (e) Murata, H.; Kafafi, Z. H.; Uchida, M. Appl. Phys. Lett. 2002, 80,
189-191. (f) Palilis, L. C.; Ma¨kinen, A. J.; Uchida, M.; Kafafi, Z. H. Appl.
Phys. Lett. 2003, 82, 2209-2211. (g) Kim, W.; Palilis, L. C.; Uchida, M.;
Kafafi, Z. H. Chem. Mater. 2004, 16, 4681-4686. (h) Liu, M. S.; Luo, J.;
Jen, A. K.-Y. Chem. Mater. 2003, 15, 3496-3500. (i) Yu, G.; Yin, Y.;
Chen, J.; Xu, X.; Sun, X.; Ma, D.; Zhan, X.; Peng, Q.; Shui, Z.; Tang, B.;
Zhu, D.; Fang, W.; Luo, Y. J. Am. Chem. Soc. 2005, 127, 6335-6346. (j)
Sohn, H.; Huddleston, R.; Power, D. R.; West, R. J. Am. Chem. Soc. 1999,
121, 2935-2936. (k) Toal, S. J.; Jones, K. A.; Madge, D.; Trogler, W. C.
J. Am. Chem. Soc. 2005, 127, 11661-11665. (l) Zhen, L.; Dong, Y.; Mi,
B.; Tang, Y.; Haeussler, M.; Tong, H.; Dong, Y.; Lam, J. W. Y.; Ren, Y.;
Sung, H. H. Y.; Wong, K. S.; Ping, G.; Williams, I. D.; Kwok, H. S.;
Tang, B. Z. J. Phys. Chem. B 2005, 109, 10061-10066. (m) Uchida, M.;
Izumizawa, T.; Nakano, T.; Yamagushi, S.; Tamao, K.; Furukawa, K. Chem.
Mater. 2001, 13, 2680-2683.
(5) (a) Hissler, M.; Dyer, P.; Re´au, R. Coord. Chem. ReV. 2003, 244, 1-44.
(b) Gate, D. Top. Curr. Chem. 2005, 250, 107-126. (c) Hissler, M.; Dyer,
P.; Re´au, R. Top. Curr. Chem. 2005, 250, 127-163. (d) Mathey, F. Angew.
Chem., Int. Ed. 2003, 42, 1578-1604.
(6) (a) Deschamps, E.; Ricard, L.; Mathey, F. Angew. Chem., Int. Ed. Engl.
1994, 11, 1158-1161. (b) Mathey, F.; Mercier, F.; Nief, F.; Fischer, J.;
Mitschler, A. J. Am. Chem. Soc. 1982, 104, 2077-2079. (c) Bevierre, O.
M.; Mercier, F.; Ricard, L.; Mathey, F. Angew. Chem., Int. Ed. Engl. 1990,
29, 655-657. (d) Deschamps, E.; Ricard, L.; Mathey, F. Heteroat. Chem.
1991, 2, 377-383. (e) Mao, S. S. H.; Don Tilley, T. Macromolecules 1997,
30, 5566-5569.
(7) (a) Hay, C.; Le Vilain, D.; Deborde, V.; Toupet, L.; Re´au, R. Chem.
Commun. 1999, 345-346. (b) Hay, C.; Fischmeister, C.; Hissler, M.;
Toupet, L.; Re´au, R. Angew. Chem., Int. Ed. 2000, 10, 1812-1815. (c)
Hay, C.; Hissler, M.; Fischmeister, C.; Rault-Berthelot, J.; Toupet, L.;
Nyulaszi, L.; Re´au, R. Chem.-Eur. J. 2001, 7, 4222-4236. (d) Fave, C.;
Hissler, M.; Se´ne´chal, K.; Ledoux, I.; Zyss, J.; Re´au, R. Chem. Commun.
2002, 1674-1675. (e) Hay, C.; Fave, C.; Hissler, M.; Rault-Berthelot, J.;
Re´au, R. Org. Lett. 2003, 19, 3467-3470. (f) Fave, C.; Hissler, M.; Karpati,
T.; Rault-Berthelot, J.; Deborde, V.; Toupet, L.; Nyula´szi, L.; Re´au, R. J.
Am. Chem. Soc. 2004, 136, 6058-6063. (g) Morisaki, Y.; Aiki, Y.; Chujo,
Y. Macromolecules 2003, 36, 2594-2597. (h) Baumgartner, T.; Neumann,
T.; Wirges, B. Angew. Chem., Int. Ed. 2004, 43, 6197-6201. (i)
Baumgartner, T.; Bergmans, W.; Karpati, T.; Neumann, T.; Nieger, M.;
Nuylaszi, L. Chem.-Eur. J. 2005, 11, 4687-4699. (j) Makioka, M.; Hayashi,
T.; Tanaka, M. Chem. Lett. 2004, 33, 44-45. (k) Niemi, T. A.; Coe, P. L.;
Till, S. J. J. Chem. Soc., Perkin Trans. 2000, 1, 1519.
Results and Discussion
Physical Properties of Dibenzophosphole Derivatives. We
started this study using the long-standing and readily available
dibenzophosphole derivatives 1-4 (Table 1),10 although these
derivatives do not display the usual properties of phospholes.
In fact, due to their benzo-annulated structure, no significant
interaction of the endocyclic π-system with the P moiety occurs
and they behave as nonflexible arylphosphines.10 For example,
while pentasubstituted σ3,λ3-diarylphospholes are air-stable
derivatives (vide infra),7 σ3,λ3-dibenzophosphole 1 gives the
corresponding oxide 2 upon exposure to air in the solid state.
Its oxygen sensitivity precludes 1 from being used as a material
for optoelectronic applications. Quite surprisingly, to the best
of our knowledge, no physical data for compounds 2-4 are
reported in the literature, although the optical properties of
dibenzophosphole-aryl copolymers were recently described.11
Derivatives 2-4 exhibit good thermal stabilities as estimated
by thermogravimetric analysis (TGA) performed under nitrogen
(Table 1). This parameter is important because low-molecular-
weight species are deposited as thin films by vacuum evapora-
tion for the fabrication of OLEDs. Furthermore, the thermal
(9) For a preliminary communication, see: Fave, C.; Cho, T.-Y.; Hissler, M.;
Chen, C.-W.; Luh, T.-Y.; Wu, C.-C.; Re´au, R. J. Am. Chem. Soc. 2003,
125, 9254-9255.
(8) (a) Lucht, B. L.; St. Onge, N. O. Chem. Commun. 2000, 2097-2099. (b)
Jin, Z.; Lucht, B. L. J. Organomet. Chem. 2002, 653, 167-176. (c) Jin,
Z.; Lucht, B. L. J. Am. Chem. Soc. 2005, 127, 5586-5595. (d) Wright, V.
A.; Gates, D. P. Angew. Chem., Int. Ed. 2002, 41, 2389-2392. (e) Smith,
R. C.; Chen, X.; Protasiewicz, J. D. Inorg. Chem. 2003, 42, 5468-5470.
(f) Smith, R. C.; Protasiewicz, J. D. J. Am. Chem. Soc. 2004, 126, 2268-
2269. (g) Cosmina, D.; Shashin, S.; Smith, R. C.; Choua, S.; Berclaz, T.;
Geoffroy, M.; Protasiewicz, J. D. Inorg. Chem. 2003, 42, 6241-6251.
(10) (a) Quin, L. D.; Quin, G. S. In Phosphorus-Carbon Heterocyclic
Chemistry: The Rise of a New Domain; Mathey, F., Ed.; Elsevier Science
Ltd: Oxford, 2001. (b) Mathey, F. Chem. ReV. 1988, 88, 429-453. (c)
Attar, S.; Bearden, W. H.; Alcock, N. W.; Alyea, E. C.; Nelson, J. H. Inorg.
Chem. 1990, 29, 425-433. (d) Egan, W.; Tang, R.; Zon, G.; Mislow, K.
J. Am. Chem. Soc. 1971, 93, 6205-6216.
(11) Kobayashi, S.; Noguchi, M.; Tsubata, Y.; Kitano, M.; Doi, H.; Kamioka,
T.; Nakazono, A. Japanese Patent 2003231741, 2003.
9
984 J. AM. CHEM. SOC. VOL. 128, NO. 3, 2006