116
HETEROCYCLES, Vol. 67, No. 1, 2006
A. D. Borthwick, H. Chaignot, P. S. Jones, J. E. Robinson, P. Shah, M. J. Slater, and R. J. Upton,
Synthesis, 2003, 1722; U. Albrecht, H. Armbrust, and P. Langer, Synthesis, 2004, 143; A. C. Rudolph,
R. Machauer, and S. F. Martin, Tetrahedron Lett., 2004, 45, 4895; T. Hjelmgaard, I. Sotofte, and D.
Tanner, J. Org. Chem., 2005, 70, 5688.
3. T. Shono, H. Hamaguchi, and Y. Matsumura, J. Am. Chem. Soc., 1975, 97, 4264; T. Shono, Y.
Matsumura, and K. Tsubata, Org. Synth., Coll. Vol. 1990, VII, 307; G. N. Wanyoike, O. Onomura, T.
Maki, and Y. Matsumura, Org. Lett., 2002, 4, 1875.
4. T. Shono, Y. Matsumura, O. Onomura, T. Kanazawa, and M. Habuka, Chem. Lett., 1984, 1101;Y.
Matsumura, Y. Kanda, K. Shirai, O. Onomura, and T. Maki, Org. Lett., 1999, 1, 175; Y. Matsumura, Y.
Kanda, K. Shirai, O. Onomura, and T. Maki, Tetrahedron, 2000, 56, 7411; O. Onomura, Y. Kanda, Y.
Nakamura, T. Maki, and Y. Matsumura, Tetrahedron Lett., 2002, 43, 3229; Y. Matsumura, O. Onomura,
H. Suzuki, S. Furukubo, T. Maki, and C.-J. Li, Tetrahedron Lett., 2003, 44, 5519.
5. P. T. Anastas and C. Warner, Green Chemistry, Theory and Practice; Oxford, 1998.
6. J. O. Metzger, Angew. Chem., Int. Ed. Engl., 1998, 37, 2975; R. S. Verma, Green Chem., 1999, 43; K.
Tanaka and F. Toda, Chem. Rev., 2000, 100, 1025; J. Long, J. Hu, X. Shen, B. Ji, and K. Ding, J. Am.
Chem. Soc., 2002, 124, 10; J.-C. Lee, C.-A. Tai, and S.-C. Hung, Tetrahedron Lett., 2002, 43, 851; A.
McCluskey, P. J. Robinson, T. Hill, J. L. Scott, and J. K. Edwards, Tetrahedron Lett., 2002, 43, 3117; F.
Y. Kwong, C. W. Lai, and K. S. Chan, Tetrahedron Lett., 2002, 43, 3537; H. Sharghi and M. Hosseini,
Synthesis, 2002, 1057; P. C. Andrews, A. C. Peatt, and C. L. Raston, Tetrahedron Lett., 2004, 45, 243;
H. Zachova, S. Man, M. Necas, and M. Potacek, Eur. J. Org. Chem., 2005, 2548.; D. Xiao, L. Wang,
and X. Feng, Synlett, 2005, 1531; X. Zhang and S. Lu, Synlett, 2005, 1535.
7. T. Shono, Y. Matsumura, and K. Tsubata, J. Am. Chem. Soc., 1981, 103, 117.
8. S. Louwrier, A. Tuynman, and H. Hiemstra, Tetrahedron, 1996, 52, 2629.
9. T. Shono, Y. Matsumura, K. Uchida, K. Tsubata, and A. Makino, J. Org. Chem., 1984, 49, 300; T.
Shono, Y. Matsumura, M. Ogaki, and O. Onomura, Chem. Lett., 1987, 1447; T. Nagasaka, S. Nishida, S.
Sugihara, T. Kawahara, K. Adachi, and F. Hamaguchi, Heterocycles, 1994, 39, 171; N. S. Camilo and R.
A. Pilli, Tetrahedron Lett., 2004, 45, 2821.
10. A typical experimental procedure under solvent-free conditions: Under an aerobic atmosphere, to a
mixture of N,O-acetal (2a) (1 mmol, 159 mg) and acetylacetone (4p) (3 mmol, 300 mg) was added
TiCl4 (0.1 mmol, 0.197 mL) at room temperature. After stirring for 12 h, the reaction mixture was
subjected on chromatography (silica gel, ethyl acetate:n-hexane=1:3) to afford 3ap in 89% yield.
11. 3ap under solvent-free conditions in the presence of MeOH (1 equiv.) and TiCl4 (0.1 equiv.) or in
CH2Cl2 containing MeOH (1 equiv.) and TiCl4 (0.1 equiv.) was stable.
12. A little bit lower yields of 3aq and 3ar under solvent-free conditions than in CH2Cl2 (entries 6 and 9)
is hardly rationalized.
13. The dependency of the yields of 3ap-3r on nucleophiles (4p-r) (entries 4, 8 and 11) can be explained
in terms of the high degree of enolization of 1,3-diketones and β-keto esters in comparison with
malonic acid esters: A. Gero, J. Org. Chem., 1954, 19, 1960.
14. 1H NMR (CDCl3, δ) spectral data of new compounds are shown below.
3as: 1.60-2.33 (m, 4H), 2.19 (s, 3H), 2.85-3.80 (m, 2H), 3.66 and 3.69 (2s, 3H), 4.30-4.40, 5.10-5.18
and 5.58-5.62 (3m, 1H), 4.65-4.80 (m, 1H), 7.38-7.65 (m, 3H), 7.82-8.11 (m, 2H).
3at: 1.62-1.82 (m, 2H), 2.00-2.28 (m, 1H), 2.35-2.48 (m, 1H), 2.85-3.10 (m, 1H), 3.25-3.50 (m, 1H),
3.58 and 3.61 (2s, 3H), 4.58-4.82 (m, 1H), 5.78 and 6.40 (2d, J=4.0 and 4.0 Hz, 0.25H and 0.75H),
7.38-7.62 (m, 6H), 7.85-8.05 (m, 4H).
3au: 1.49-2.63 (m, 10H), 3.40-3.80 (m, 5.5H), 4.69-4.78 (m, 1H), 10.78 (br s, 0.5H).
3bp: 1.78-2.30 (m, 4H), 2.17 (br s, 6H), 3.30-3.40 (m, 1H), 3.45-3.52 (m, 1H), 4.00-4.50 (m, 1H), 4.45
(br s, 1H), 5.13 (br s, 2H), 7.36 (s, 5H).
3bt: 1.62-2.50 (m, 4H), 2.90-3.00 (m, 1H), 3.10-3.55 (m, 1H), 4.60-4.75 (m, 1H), 4.98-5.30 (m, 2H),
7.20-7.45 (m, 10H), 7.50-7.58 (m, 2H), 7.65-7.75 (m, 1H), 7.90-8.00 (m, 2H).
15. T. Shono, Y. Matsumura, K. Tsubata, and K. Uchida, J. Org. Chem., 1986, 51, 2590; T. Shono, Y.
Matsumura, O. Onomura, and M. Sato, J. Org. Chem., 1988, 53, 4118.