10
O.A. El-Gammal et al. / Journal of Molecular Structure 1007 (2012) 1–10
Table 8
[12] HyperChem version 8.0 Hypercube, Inc.
[13] N.L. Alpert, W.E. Keiser, H. Szmanski,
Spectroscopy, Plenum Press, New York, 1995.
A
Theory and Practice of Infrared
Antibacterial activities in terms of inhibition zone diameter (mm) of H2L and its metal
complexes.
[14] O.A. El-Gammal, Spectrochim. Acta 75 (A) (2010) 533.
[15] P.B. Sreeja, M.R.P. Kurup, A. Kishore, C. Jasmin, Polyhedron 23 (2004) 575.
[16] U. El-Ayaan, I.M. Kenawy, Y.G. Abu El-Reash, J. Mol. Struct. 871 (2007) 14.
[17] U. El-Ayaan, G.A. EL-Reash, I.M. Kenawy, Synth. React. Inorg. Met. – Org. Chem.
33 (2003) 329.
Compound
Zone of inhibition of bacterial growth (mm)
Bacillus thuringiensis
Pseudomonas aeuroginosa
(Gram-positive)
(Gram-negative)
[18] J. Chakraborty, G. Pilet, M.S. El. Fallah, J. Ribas, S. Mitra, Polyhedron 10 (2007)
489.
[19] H.M. E1-Shaaer, P. Foltinova, M. Lacova, J. Chovancova, H. Stankovicova, Il.
Farmaco. 53 (1998) 224.
[20] M.V. Angelusiu, S.F. Barbuceanu, C. Draghici, G.L. Almajan, Eur. J. Med. Chem.
45 (2010) 2055.
[21] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination
Compounds, Wiley, New York, 1986. p. 231.
Gentamicin
H2L
[Cu(H2L)Cl2(H2O)]H2O 40
[Co(H2L)Cl2(H2O)2]
[Ni(HL)Cl]
48
35
48
0
0
14
44
47
26
48
30
56
54
71
48
65
71
[Cd(HL)Cl]H2O
[Zn(HL)(OAc)]H2O
[Hg(H2L)Cl2]H2O
[UO2(H2L)(OAc)2]H2O
[22] K. Chanda, P.K. Sharma, B.S. Gray, R.P. Singh, J. Inorg. Nucl. Chem. 42 (1980)
187.
[23] F. Quilés, Vib. Spectrosc. 18 (1998) 61.
[24] C.J. Chisholm-Brause, J.M. Berg, R.A. Matzner, D.E. Morris, J. Colloid Interf. Sci.
233 (2001) 38.
[25] N. Henry, M. Lagrenée, T. Loiseau, N. Clavier, N. Dacheux, F. Abraham, Inorg.
Chem. Commun. 14 (2011) 429.
[26] T.H. Rakha, N. Nawar, G.M. Abu Reash, Synth. React. Inorg. Met. – Org. Chem.
26 (1996) 1705.
[27] J. Chakraborty, S. Thakurta, G. Pilet, D. Luneau, S. Mitra, Polyhedron 28 (2009)
819.
[28] M.E. Khalifa, M.A. Akl, S.E. Ghazy, Chem. Pharm. Bull. 49 (2001) 664.
[29] B. Schrader, Vibrational Spectroscopy of Different Classes and States of
Compounds, Weinheim, Germany, 2007.
oxo-4H-chromen-3-yl)methylene)-2-(phenylamino)acetohydraz-
ide (H2L). Different structures have been proposed: octahedral
geometry for Co(II), Cu(II) and U(VI)O22þ, a tetrahedral structure
for Ni(II), Cd(II), Zn(II) and Hg(II). Cd(II) and U(VI)O22þ complexes
exhibited high inhibitory effects on B. thuringiensis (Bt) while Hg(II)
complex against P. aeuroginosa (Pa) organisms.
[30] M. Atmeh, N.R. Russell, T.E. Keyes, Polyhedron 27 (2008) 1690.
[31] L. Sacconi, M. Cinmpolinic, J. Chem. Soc. 85 (1963).
[32] A.A.A. Emaraa, B.A. El-Sayed, E.A.E. Ahmed, Spectrochim. Acta 69 (A) (2008)
757.
[33] J.C. Bailar, H.J. Emeleus, R. Nyholm, A.F. Trotman-Dickenson, Comprehensive
Inorganic Chemistry, vol. 3, Pergamon Press, New York, 1975.
[34] E.I. Solomon, A.B.P. Lever, Inorganic Electronic Structure and Spectroscopy,
Elsevier, New York, 2006.
[35] J. Lewis, R.G. Wilims, Modern Coordination Chemistry, Interscience, New York,
1960.
[36] U. El-Ayaan, M.M. Youssef, S. Al-Shihry, J. Mol. Struct. 936 (2009) 213.
[37] A.W. Coats, J.P. Redfern, Nature 20 (1964) 68.
Appendix A. Supplementary material
Supplementary data associated with this article can be found, in
References
[1] S. Rollas, S.G. Küçükgüzel, Molecules 12 (2007) 1910.
[2] P. Vicini, M. Incerti, I.A. Doytchinova, P. La Colla, B. Busonera, R. Loddo, Eur. J.
Med. Chem. 41 (2006) 624.
[3] H.J.C. Bezerra-Netto, D.I. Lacerda, A.L.P. Miranda, H.M. Alves, E.J. Barreiro,
C.A.M. Fraga, Bioorg. Med. Chem. 14 (2006) 7924.
[38] H.H. Horowitz, G. Metzger, Anal. Chem. 35 (1963) 1464.
[39] A. Broido, J. Polym. Sci. A 2 (7) (1969) 1761.
[40] A.A. Frost, R.G. Pearson, Kinetics and Mechanisms, Wiley, New-York, 1961.
[41] T. Taakeyama, F.X. Quinn, Thermal Analysis Fundamentals and Applications to
Polymer Science, John Wiley and Sons, Chichester, 1994.
[42] P.B. Maravalli, T.R. Goudar, Thermochim. Acta 325 (1999) 35.
[43] K.K.M. Yusuff, R. Sreekala, Thermochim. Acta 159 (1990) 357.
[44] S.S. Kandil, G.B. El-Hefnawy, E.A. Baker, Thermochim. Acta 414 (2004) 105.
[45] A.A.R. Despaigne, J.G. da Silva, A.C.M. do Carmo, O.E. Piro, E.E. Castellano, H.
Beraldo, J. Mol. Struct. 920 (2009) 97.
[4] Y.P. Kitaev, B.I. Buzykin, T.V. Troepolskaya, Russ. Chem. 4 (2006) 624.
[5] O. Pouralimardan, A.C. Chamayou, C. Janiak, H. Hosseini-Monfared, Inorg.
Chim. Acta 360 (2007) 1599.
[6] C. Basu, S. Chowdhury, R. Banerjee, H.S. Evans, S. Mukherjee, Polyhedron 26
(2007) 3617.
[7] M. Bakir, O. Green, W.H. Mulder, J. Mol. Struct. 873 (2008) 17.
[8] J.L. Buss, J. Neuzil, P. Ponka, Biochem. Soc. Trans. 30 (2002) 755.
[9] P. Foltinova´, M. La´cova´, D. Loos, Il Farmaco. 55 (2000) 21.
[10] N.N. Das, A.C. Dash, Polyhedron 15 (1996) 1751.
[11] R.P. John, A. Sreekanth, V. Rajakannan, T.A. Ajith, M.R.P. Kurup, Polyhedron 23
(2004) 2549.
[46] A.A.R. Despaigne, J.G. da Silva, A.C.M. do Carmo, F. Sives, O.E. Piro, E.E.
Castellano, H. Beraldo, Polyhedron 28 (2009) 3797.
[47] S. Sagdinc, B. Koksoy, F. Kandemirli, S.H. Bayari, J. Mol. Struct. 917 (2009) 63.