S. C. Sinha and E. Keinan, J. Org. Chem., 2000, 65, 6035–6051; (f)
Z.-M. Wang, S.-K. Tian and M. Shi, Eur. J. Org. Chem., 2000, 349–356.
11 M. Cueto and J. Darias, Tetrahedron, 1996, 52, 5899–5906 and
references cited therein.
12 For reviews, see: (a) G. Cardillo and M. Orena, Tetrahedron, 1990, 46,
3321–3408; (b) J.-C. Harmange and B. Figade`re, Tetrahedron:
Asymmetry, 1993, 4, 1711–1754; (c) U. Koert, Synthesis, 1995,
115–132; (d) M. C. Elliott, J. Chem. Soc., Perkin Trans. 1, 2000,
1291–1318; (e) M. M. Faul and B. E. Huff, Chem. Rev., 2000, 100,
2407–2474.
13 For some recent examples see: (a) G. C. Micalizio and W. R. Roush,
Org. Lett., 2000, 2, 461–464; (b) C. Ericsson and L. Engman, Org. Lett.,
2001, 3, 3459–3462; (c) L. Vares and T. Rein, J. Org. Chem., 2002, 67,
7226–7237; (d) G. V. M. Sharma, K. R. Kumar, P. Sreenivas,
P. Radha Krishna and M. S. Chorghade, Tetrahedron: Asymmetry,
2002, 13, 687–690; (e) D. D. D´ıaz, M. A. Ram´ırez, J. P. Cen˜al, J. R. Saad,
C. E. Tonn and V. S. Martin, Chirality, 2003, 15, 148–155; (f) V. Nair,
S. Mathai and R. L. Varma, J. Org. Chem., 2004, 69, 1413–1414; (g)
M. B. Hay, A. R. Hardin and J. P. Wolfe, J. Org. Chem., 2005, 70,
3099–3107; (h) P. D. Pohlhaus and J. S. Jhonson, J. Org. Chem., 2005,
70, 1057–1059; (i) M. Makosza, M. Barbasiewicz and D. Krajewski,
Org. Lett., 2005, 7, 2945–2948; (j) S. Jana, C. Guin and S. C. Roy,
Tetrahedron Lett., 2005, 46, 1155–1157 and references cited therein.
14 (a) K. C. Nicolaou, M. E. Duggan, C.-K. Hwang and P. K. Somers,
J. Chem. Soc., Chem. Commun., 1985, 1359–1362; (b) S. Hatakeyama,
K. Sakurai, H. Numata, N. Ochi and S. Takano, J. Am. Chem. Soc.,
1988, 110, 5201–5203; (c) V. Dimitrov, I. Philipova and S. Simova,
Tetrahedron: Asymmetry, 1996, 7, 1493–1500; (d) M. Miyazawa,
H. Nankai and H. Kameoka, Nat. Prod. Lett., 1997, 9, 249–252; (e)
C. Mukai, Y.-i. Sugimoto, K. Miyazawa, S. Yamaguchi and
M. Hanaoka, J. Org. Chem., 1998, 63, 6281–6287; (f) D. D. Mart´ın,
I. S. Marcos, P. Basabe, R. E. Romero, R. F. Moro, W. Lumeras,
L. Rodr´ıguez and J. G. Urones, Synthesis, 2001, 1013–1022.
15 (a) J.-P. Bats, J. Moulines and J.-C. Pommier, Tetrahedron Lett., 1976,
17, 2249–2250; (b) K. C. Nicolaou, C. V. C. Prasad, P. K. Somers and
C.-K. Hwang, J. Am. Chem. Soc., 1989, 111, 5335–5340; (c) J. Na,
K. N. Houk, C. G. Shevlin, K. D. Janda and R. A. Lerner, J. Am.
Chem. Soc., 1993, 115, 8453–8454; (d) J. M. Coxon and A. J. Thorpe,
J. Am. Chem. Soc., 1999, 121, 10955–10957.
Fig. 2 Proposed mechanism.
Fig. 3 Sites of diversification.
the illustrated chemistry described herein to obtain densely
functionalized enantiomerically pure tetrahydrofurans. Moreover,
the tetrahydrofurans synthesised above are unique due to the four
point diversity (Fig. 3) and multiple stereocenters present in them.
The utility of these templates (THFs) in the synthesis of
biologically important natural products, including oligosacchar-
ides, along with their analogues will be presented in due course.
We are thankful to Mr A. K. Pandey for technical assistance.
LVRR and ADR to CSIR New Delhi for financial assistance.
Notes and references
16 L. V. R. Reddy, R. Sagar and A. K. Shaw, Tetrahedron Lett., 2006, 47,
1753–1756.
1 For reviews, see: (a) R. D. Norcross and I. Paterson, Chem. Rev., 1995,
95, 2041–2114; (b) F. Q. Alali, X.-X. Liu and J. L. McLaughlin, J. Nat.
Prod., 1999, 62, 504–540.
17 J. D. White, G. Wang and L. Quaranta, Org. Lett., 2003, 5, 4109–4112.
18 For C-2 selective reactions with carbon nucleophiles, see: (a)
B. H. Lipshutz and S. Sengupta, Org. React., 1992, 41, 135–631; (b)
M. Sasaki, K. Tanino, A. Hirai and M. Miyashita, Org. Lett., 2003, 5,
1789–1791 and references cited therein.
19 (a) F. Gonzalez, S. Lesage and A. S. Perlin, Carbohydr. Res., 1975, 42,
267–274; (b) R. Sagar, R. Pathak and A. K. Shaw, Carbohydr. Res.,
2004, 339, 2031–2035; (c) Md. Saquib, R. Sagar and A. K. Shaw,
Carbohydr. Res., 2006, 341, 1052–1056.
20 A. L. Gemal and J. L. Luche, J. Am. Chem. Soc., 1981, 103, 5454–5459.
21 (a) T. Katsuki and K. B. Sharpless, J. Am. Chem. Soc., 1980, 102,
5974–5976; (b) R. Sagar, PhD Dissertation, Dr. B. R. Ambedkar
University, 2005.
22 C. Fayet and J. Gelas, Heterocycles, 1986, 24, 1373–1376 and references
cited therein.
23 82% yield, mp 76–78 uC, [a]2D0 53.12 (c 0.064, CHCl3), column
chromatography, 3 : 97 MeOH–CHCl3 v/v, Rf 0.27 (1 : 9 MeOH–
CHCl3), 1H NMR (CDCl3, 400 MHz) d 3.41 (brs, 3H, 3 6 OH), 3.67–
3.81 (m, 3H, H-1 and H-6a), 3.92 (brm, 1H, H-2), 4.02–4.06 (m, 3H,
H-3, H-4, H-6b), 4.28 (brd, J = 2.4 Hz, 1H, H-5), 4.55 (d, J = 11.6 Hz,
1H, CH2Ph), 4.63 (d, J = 12 Hz, 1H, CH2Ph); 7.26-7.30 (m, 5H, ArH).
13C NMR (CDCl3, 100 MHz) d 64.1 (C-1), 69.3 (C-2), 72.3 (CH2Ph),
73.8 (C-6), 74.4 (C-5), 79.6 (C-3), 84.1 (C-4), 127.6 (ArC), 127.7 (ArC),
128.4 (ArC), 138.0 (qC); IR (KBr, cm21) 3393 (O–H str), 3018 (LC–H
str), 2933, 2882 (C–H str), 1655, 1497, 1456 (CLC str), 1216, 1086 (C–O
str); mass (ESI-MS) m/z 277 [M+ + Na]; EI-HRMS: (M + H) calcd for
C13H18O5 + H 255.1241, found 255.1232.
2 For some selected examples see: (a) R. A. Pilli and V. B. Riatto,
Tetrahedron: Asymmetry, 2000, 11, 3675–3686; (b) T. K. Chakraborty,
S. Das and T. V. Raju, J. Org. Chem., 2001, 66, 4091–4093; (c) L. Vares
and T. Rein, J. Org. Chem., 2002, 67, 7226–7237; (d) A. A. da
Silva Filho, S. Albuquerque, M. L. A. e Silva, M. N. Eberlin,
D. M. Tomazela and J. K. Bastos, J. Nat. Prod., 2004, 67, 42–45; (e)
J. Wu, N. Li, T. Hasegawa, J. Sakai, S. Kakuta, W. Tang, S. Oka,
M. Kiuchi, H. Ogura, T. Kataoka, A. Tomida, T. Tsuruo and M. Ando,
J. Nat. Prod., 2005, 68, 1656–1660; (f) Y. Du, J. Liu and R. J. Linhardt,
J. Org. Chem., 2006, 71, 1251–1253 and references cited therein.
3 R. H. Boeckman and M. Goldstein, in The Total Synthesis of Natural
Products, ed. J. Apsimon, John Wiley & Sons, New York, 1988, vol. 7,
p. 1.
4 I. Kuroda, M. Musman, I. I. Ohtani, T. Ichiba, J. Tanaka, D. G.
Gravalos and T. Higa, J. Nat. Prod., 2002, 65, 1505–1506.
5 H. Yoda, T. Shimojo and K. Takabe, Synlett, 1999, 12, 1969–1971.
6 (a) Y.-L. Huang, C.-C. Chen, F.-L. Hsu and C.-F. Chen, J. Nat. Prod.,
1996, 59, 520–521 and references cited therein; (b) H. Yoda, M. Mizutani
and K. Takabe, Tetrahedron Lett., 1999, 40, 4701–4702.
7 H. Y. Zhang, H. W. Yu, L. T. Ma, J. M. Min and L. H. Zhang,
Tetrahedron: Asymmetry, 1998, 9, 141–149.
8 A. Duclos, C. Fayet and J. Gelas, Synthesis, 1994, 1087–1090.
9 M. M. Faul and B. E. Huff, Chem. Rev., 2000, 100, 2407–2474.
10 (a) R. Hoppe and H.-D. Scharf, Synthesis, 1995, 1447–1464; (b)
G. W. Gribble, Acc. Chem. Res., 1998, 31, 141–152; (c) S. Schulz,
G. Beccaloni, R. Nishida, Y. Roisin, R. I. Vane-Wright and
J. N. McNeil, Z. Naturforsch., C: J. Biosci., 1998, 53, 107–116; (d)
E.-J. Kim, F. Tian and M.-H. Woo, J. Nat. Prod., 2000, 63, 1503–1506;
(e) H. Avedissian, S. C. Sinha, A. Yazbak, A. Sinha, P. Neogi,
24 Though THF was formed in this case, the separation of product became
difficult as the Rf value of the tetrahydrofuran formed was the same as
that of the amine salt.
3446 | Chem. Commun., 2006, 3444–3446
This journal is ß The Royal Society of Chemistry 2006