4
Tetrahedron Letters
2.
(a) Sun, C. L.; Shi, Z. J. Chem. Rev., 2014, 114, 9219. (b) Allais,
C.; Grassot, J. M.; Rodriguez, J.; Constantieux, T. Chem. Rev.,
2014, 114, 10829. (c) Roscales, S.; Csaky, A. G. Chem. Soc. Rev.,
2014, 43, 8215.
1a
3.
McLaughlin, N. P.; Evans, P.; Pines, M. Bioorg. Med. Chem.,
2014, 22, 1993.
4.
5.
Shetha, A.; Wijdan, I. A. J. Chem. Pharma. Res., 2013, 5, 42.
Foster, B. A.; Coffrey, H. A.; Morin, M. J.; Rastinejad, F. Science,
1999, 286, 250.
6.
7.
8.
Abid, O. H.; Ahmed, A. H. J. Appl. Nat. Sci., 2013, 2, 11.
Pati, B.; Banerjee, S. J. Adv. Pharm. Edu. Res., 2013, 3, 136.
Saravanan, G.; Pannerselvam, P.; Prakash, C. R. Der Pharmacia
Lett., 2010, 2, 216.
0.2 M aq. KOH (20 ml)
DMSO (10 ml), 30 min
0.2 M aq. KOH (40 ml)
DMSO (20 ml), 30 min
0.2 M aq. KOH (60 ml)
DMSO (30 ml), 30 min
9.
Krishnan, S. K.; Ganguly, S.; Veerasamy, R.; Jan, B. Eur. Rev.
Med. Pharmacol. Sci., 2011, 15, 673.
10. Chern, J.; Tao, P.; Wang, K.; Gutcait, A.; Liu, S.; Yen, M.; Chien,
S.; Rong, J. J. Med. Chem., 1998, 41, 3128.
Scheme 1: Gram scale synthesis
11. Patel, N. B.; Patel, V. N.; Patel, H. R.; Shaikh, F. M.; Patel, J. C.
Acta Pol. Pharma.: Drug Research, 2010, 67, 267.
12. (a) Moore, J. A.; Sutherland, G. J.; Sowerby, R.; Kelly, E. G.;
Palermo S.; Webster, W. J. Org. Chem., 1969, 34, 887; (b) Cai, G.
P.; Xu, X. L.; Li, Z. F.; Weber, W. P.; Lu, P. J. Heterocycl. Chem.,
2002, 39, 1271; (c) Connolly, D. J.; Cusack, D.; O’sullivan T. P.;
Guiry, P. J. Tetrahedron, 2005, 61, 10153.
13. (a) Shi, D. Q.; Rong, L. C.; Wang, J. X.; Wang, X. S.; Tu, S. J.;
Hu, H. W. Chem. J. Chin. Univ., 2004, 25, 2051; (b); (c) Shi, D.
Q.; Rong, L. C.; Wang, J. X.; Zhuang, Q. Y.; Wang X. S.; Hu, H.
W. Tetrahedron Lett., 2003, 44, 3199; (c) Shi, D. Q.; Shi, C. L.;
Wang, J. X.; Rong, L. C.; Zhuang Q. Y.; Wang, X. S. J.
Heterocycl. Chem., 2005, 40, 173.
14. (a) Dabiri, M.; Salehi, P.; Otokesh, S.; Baghbanzadeh, M.;
Kozehgarya G.; Mohammadi, A. A. Tetrahedron Lett., 2005, 46,
6123; (b) Salehi, P.; Dabiri, M.; Zolfigol M. A.; Baghbanzadeh,
M. Synlett, 2005, 1155; (c) Baghbanzadeh, M.; Salehi, P.; Dabiri
M.; Kozehgarya, G. Synlett, 2006, 344.
15. Rostami, A.; Ashkan Tavakoli, A. Chin. Chem. Lett., 2011, 22
1317.
16. Abdollahi-Alibeik, M.; Shabani, E. Chin. Chem. Lett., 2011, 22,
1163.
Plausible mechanism of the reaction:
Based on the above results, a plausible reaction mechanism
has been proposed for this protocol (Scheme 2). The reaction was
initiated with the formation of Schiff base intermediate between
aldehyde and 2-aminobezamide in the presence of KOH/DMSO
suspension. Then delocalisaztion of the lone-pair on nitrogen
atom to the elctrophilic carbon atom followed by the abstraction
of the proton by the hydroxide ion of the KOH/DMSO
suspension resulted in the formation of cyclized product with a
negative centre on nitrogen atom. Finally, protonation takes place
from the water molecule which was released in the previous step
and give the desired 2,3-dihydroquinazolin-4(1H)-one.
OH
H
O
N
O
O
O
N
NH
R
H
NH2
NH2
NH2
R
R
17. Chen, J. X.; Wu, H. Y.; Su, W. K. Chin. Chem. Lett., 2007, 18,
536.
18. Shaabani, A.; Maleki, A.; Mofakham, H. Synth. Commun., 2008,
38, 3751.
(KOH DMSO)
H2O
19. Cheng, R.; Guo, T.; Zhang-Negrerie, D.; Du, Y.; Zhao, K.
Synthesis, 2013, 45, 2998.
20. Abdel-Jalil, R. J.; Voelter, W.; Saeed, M. Tetrahedron Lett., 45,
2004, 3475.
21. Chen, J.; Su, W.; Wu, H.; Liu, M.; Jin, C. Green Chem., 2007, 9,
972.
22. Obaiah, O.; Kebbahalli, N. N.; Goravanahalli, R. M.;
Chottanahalli, P. S.; Kanchugarakoppal, R. S.; Kempegowda, M.
Eur. J. Chem., 2014, 5, 671.
O
O
H2O
OH
NH
NH
N
R
N
H
R
Scheme 2: Plausible reaction mechanism
Conclusion
In summary, we have succeeded in developing a simple and
eco-friendly methodology for synthesis of 2,3-dihydroquinazolin-
4(1H)-ones catalyzed by KOH/DMSO suspension at room
temperature. With the ease of procedure, the use of easily
accessible and inexpensive substrates, short reaction times and
utility for the synthesis of a wide range of derivatives made this
protocol very attractive. We believe that this greener and cost
effective process finds application in the synthesis of
quinazolinone containing pharmaceutical compounds.
23. Dutta, A.; Chetia, M.; Ali, A. A.; Bordoloi, A.; Gehlot, P. S.;
Kumar, A.; Sarma, D. Catal. Lett., 2019, 149, 141.
24. Typical experimental procedure: 2-Aminobezamides (1 mmol)
and substituted aldehyde (1.2 mmol) and 0.2 M solution of KOH
in water (2 mL) in DMSO (1 mL) were stirred at room
temperature. The progress of the reaction was monitored by TLC
under UV light. After completion of the reaction the mixture was
extracted with ethyl acetate (3 x 10 mL) and washed with water (3
x 10 mL). The combined extract was dried over anhydrous
Na2SO4. The filtrate was concentrated under reduced pressure. The
product was purified by column chromatography over silica gel
using n-hexane/ethyl acetate (3:1 v/v) as eluent to get the purified
product. The products were then characterized by ESI-MS, 1H
NMR and 13C NMR spectra.
Acknowledgments
DS is thankful to DBT, New Delhi, India for a research grant [No.
BT/PR24684/NER/95/810/2017]. AD thanks DBT, New Delhi for
Research Fellowship. The financial assistance of UGC-SAP
programme to the Department of Chemistry, Dibrugarh University is
also gratefully acknowledged.
Supplementary Material
1
General Information, Experimental and Analytical data, H
and 13C NMR spectra and characterisation data of all the
synthesised compounds are available as Supplementary
Information
References and notes
1.
Sheldon, R. A.; Arends, I.; Hanefeld, U. Green Chemistry and
Catalysis; Wiley-VCH: Weinheim, Germany, 2007.