10.1002/adsc.202100559
Advanced Synthesis & Catalysis
Detailed experimental procedures for substrates synthesis,
kinetic resolution of racemic 3a, NMR-, HPLC-spectra and
crystallographic data can be found in the supporting
information.
A. Samim, D. Panja, S. Kundu, Catal. Sci.Technol. 2019,
9, 6002-6006; n) P. T. K. Arachchige, C. S. Yi, Org. Lett.
2019, 21, 3337-3341; o) A. Kondoh, C. Ma, M. Terada,
Chem. Commun. 2020, 56, 10894-10897; p) J. R.
Alexander, V. I. Shchepetkina, K. S. Stankevich, R. J.
Benedict, S. P. Bernhard, R. J. Dreiling, M. J. Cook,
Org. Lett. 2021 23, 559-564.
Acknowledgements
This work was supported by the Centre National de la Recherche
Scientifique (C.N.R.S), funded by the french government. The
author thanks Dr. Amélie Duraud for proof-reading.
[5] For enantioselective Auto Tandem Catalysis, see: a ) D.
Enders, M. R. Hûttl, C. Grondal, G; Raabe, Nature, 2006,
441, 861-863; b) J. Barluenga, N. Quiñones, M.-P. Cabal,
F. Aznar, C. Valdés, Angew. Chem. Int. Ed. 2011, 50,
2350-2353; Angew.Chem. 2011, 123, 2398-2401; c) N.
Kanbayashi, K. Takenaka, T. Okamura, K. Onitsuka,
Angew. Chem. Int. Ed. 2013, 52, 4897-4901; Angew.
Chem. 2013, 125, 4997-5001; d) J. Long, R. Yu, J. Gao,
X. Fang, Angew. Chem. Int. Ed. 2020, 59, 6785-6789;
Angew. Chem. 2020, 132, 6851-6855; e) M. Wang, M.
Zhou, L. Zhang, Z. Zhang, Wanbin Zhang, Chem. Sci.,
2020, 11, 4801-4807.
References
[1]a) D. E. Fogg, E. N. dos Santos, Coord. Chem. Rev. 2004,
248, 2365-2379; b) N. T. Patil, V. S. Shinde, B. Gajula,
Org. Biomol. Chem. 2012, 10, 211-224; c).S. M.
Inamdar, V. S. Shinde, N. T. Patil, Org. Biomol. Chem.
2015, 13, 8116-8162; d) T. L. Lohr, T. J.Marks, Nat.
Chem. 2015, 7, 477-482; e) J. Zhou, Multicatalyst
System in Asymmetric Catalysis, Wiley, 2015; f) A.
Galván, F. J. Fañanás, F. Rodríguez, Eur. J. Inorg. Chem.
2016, 1306-1313; g) G. Szőllősi, Catal. Sci.Technol.
2018, 8, 389-422; h) J. F. Campos, S. Berteina-Raboin,
Catalysis, 2020, 10, 631; i) S. P. Sancheti, Urvashi, M.
P. Shah, N. T. Patil, ACS Catal. 2020, 10, 3462-3489; j)
R. Calmanti, M. Selva, A. Perosa, Green Chem, 2021,
23, 1921-1941; q) S. Martínez, L. Veth, B. Lainer, P.
Dydio, ACS Catal. 2021, 11, 3891-3915.
[6] a) V. Boucard, G. Broustal, J-M. Campagne, Eur. J. Org.
Chem, 2007, 225-236; b) J. Marco, M. Carda, J. Murga,
E. Falomir, Tetrahedron, 2007, 63, 2929-2958; c) K.
Eskandari, M. Rafieian-Kopaei, Chem. Heterocycl.
Comp. 2016, 158-160; d) A. Axelsson, E. Hammarvid,
M. Rahm, H. Sundén, Eur. J. Org. Chem, 2020, 5436-
5444.
[7] a) Z-G. Zhang, J-H. Fu, F. Sha, X-Y. Wu, Tetrahedron,
2018, 74, 3557-3563; b) H. Joshi, A. Yadav, A. Das, V.
K. Singh, J. Org. Chem. 2020, 85, 3202-3212; c) C.
Curti, L. Battistini, A. Sartori, F. Zanardi, Chem. Rev.
2020, 120, 2448-2612.
[2] a) N. Shindoh, Y. Takemoto, K. Takasu, Chem. Eur. J.
2009, 15, 12168-12179; b) J.E. Camp, Eur. J. Org.
Chem. 2017, 425-433; c) R. Barroso, M. P. Cabal, C.
Valdés, Synthesis, 2017, 49, 4434-4447.
[8] S. Wittmann, T. Martzel, Cong Thanh Pham Truong, M.
Toffano, S. Oudeyer, R. Guillot, C. Bournaud, V.
Gandon, J.-F. Brière, G. Vo-Thanh. Angew. Chem. Int.
Ed. 2021, 60, 11110-11114; Angew. Chem. 2021, 133,
11210-11214.
[3] In addition of ATC process, an interesting
organocatalytic iterative sequence was developped by T.
Soós and coworkers. a) S. Varga, G. Jakab, L. Drahos,
T. Holczbauer, M. Czugler, T. Soós, Org. Lett. 2011, 13,
5416-5419; b) S. Varga, G. Jakab, A. Csámpai, T. Soós,
J. Org. Chem. 2015, 80, 8990-8996.
[9] For reviews on catalytic transformations of Meldrum’s
acid derivatives, see: a) A. M. Dumas, E. Fillion, Acc.
Chem. Res. 2010, 43, 440; b) E. Pair, T. Cadart, V.
Levacher, J.-F. Brière, ChemCatChem. 2016, 8, 1882-
1890.
[4] Selected examples of Auto Tandem Catalysis: a) H.
Ueda, M. Yamaguchi, H. Kameya, K. Sugimoto, H.
Tokuyama, Org. Lett. 2014, 16, 4948-4951; c) S. Das, D.
Hong, Z. Chen, Z. She, W. H. Hersh, G. Subramaniam,
Y. Chen, Org. Lett. 2015, 17, 5578-5581; d) R. Mancuso,
A. Maner, I. Ziccarelli, C. Pomelli, C. Chiappe, N. Della.
Ca’, L. Veltri, B. Gabriele, Molecules, 2016, 21, 897-
905; e) A. R. O. Venning, M. R. Kwiatkowski, J. E.
Roque Peça, B. C. Lainhart, A. A. Guruparan, E. J.
Alexanian, J. Am. Chem. Soc. 2017, 139, 11595-11600;
f) M. Bakos, Á. Gyömöre, A. Domján, T. Soós, Angew.
Chem. Int. Ed. 2017, 56, 5217-5221; Angew. Chem.
2017, 129, 5301-5305; g) R. Barroso, M. Paraja, M.-P.
Cabal, C. Valdes, Org. Lett. 2017, 19, 4086-4089; h) W.
Huang, C. Liu, Y. Gu, Adv. Synth. Catal. 2017, 359,
1811-1818; i) C. J. C. Lamb, B. G. Nderitu, G. McMurdo,
J. M. Tobin, F. Vilela, A.-L. Lee, Chem. Eur. J. 2017,
23, 18282-18288; j) A. Kondoh, M. Terada, Org. Lett.
2018, 20, 5309-5313; k) W. Zhang, C. Meng, Y. Liu, Y.
Tang, F. Li, Adv. Synth. Catal. 2018, 360, 3751-3759; l)
P. Chen, Z.-C. Chen, Y. Li, Q. Ouyang,W. Du, Y.-C.
Chen, Angew. Chem. Int. Ed. 2019, 58, 4036-4040;
Angew. Chem. 2019, 131, 4076-4080; m) B. C. Roy, Sk.
[10] a) P. S. Tiseni, R. Peters, Angew. Chem. Int. Ed. 2007,
46, 5325-5328; Angew. Chem. 2007, 119, 5419-5422; b)
P. S. Tiseni, R. Peters, Chem. Eur. J. 2010, 16, 2503-
2517.
[11] See SI for conversion, 3a/4a ratio and enantiomeric
excesses value.
[12] E value is calculated from E = [log((1-c)(1-
ee3a)]/[log((1-c)(1+ee3a)] and c= ee3a/(ee3a+ee4a). See H.
B. Kagan, J. C. Fiaud, Topics in Stereochemistry, (Eds.:
E. L. Eliel et S. Wilen), John Wiley & Sons. 1988, 18,
249-330.
[13] The optimal temperature at 10 °C was determinated to
offer the best enantioselectivity (Table1). The
preparation of new racemic compounds 3a-p or 4a-p
were obtained from basic catalysis to give pure samples
(see SI).
6
This article is protected by copyright. All rights reserved.