Organometallics 2006, 25, 1337-1340
1337
Indenyl- and Fluorenyl-Functionalized N-Heterocyclic Carbene
Complexes of Titanium and Vanadium
Stephen P. Downing and Andreas A. Danopoulos*
Department of Chemistry, UniVersity of Southampton, Highfield, Southampton, U.K. SO17 1BJ
ReceiVed NoVember 25, 2005
Summary: The new N-heterocyclic carbene ligands functional-
ized with indenyl and fluorenyl groups, 1-[ind-(CH2)2]-NHC,
(Ind-NHC)-, and 1-[fl-(CH2)2]-NHC, (Fl-NHC)-, where ind
) 1-indenyl, fl ) 9-fluorenyl, NHC ) 3-DiPP-imidazol-2-
ylidene, DiPP ) 2,6-Pri2-C6H3, serVe as Versatile building
blocks of Ti(III) and V(III) complexes.
rise to active polymerization,6a-c oligomerization,6d,e C-H
activation,6f and hydroamination6g catalysts. The role of the
pendant group in these catalytic reactions is subtle and diverse.
For example, it can increase complex catalyst stability by chelate
formation, impose coordination rigidity by suppressing substitu-
tion or conproportionation reactions,7 promote hemilability,8
modify the sterics around the metal, and create chirality.
In this communication we wish to describe (i) the synthesis
of the first imidazolium salts with pendant indene or fluorene
groups, (ii) their deprotonation to the neutral indene- or fluorene-
NHC and the anionic indenyl- and fluorenyl-NHC species,
respectively, and (iii) the synthesis and structural characterization
of the first Ti and V complexes with the new bidentate chelate
ligands.
The use of N-heterocyclic carbenes (NHCs) in catalytic
transition metal systems has been an active area of research
over the last decade.1 The most successful applications are in
the metathesis (Ru catalyst) and C-C coupling (Pd catalyst)
reactions.2 Polydentate NHC ligands in which the NHC is linked
to a neutral or anionic donor by an organic spacer are being
developed, because they could offer fine-tuning of the coordina-
tion sphere of metals.3 However, cyclopentadienyl and the alkyl-
substituted or -annulated derivatives (indenyl, fluorenyl, etc.)
with pendant NHC groups are not known, even though “half-
sandwich” complexes of the type (Cp)M(NHC)(Ligand)n have
been prepared.4 Work on cyclopentadienyl-type ligands with
pendant neutral or anionic “classical” donor groups5 has given
The new imidazolium pro-ligands (Scheme 1) are obtained
in good yields by the quaternization of â-bromoethylindene9
or â-bromoethylfluorene10 with DiPP-imidazole.11,12 Attempts
to prepare analogous tetramethylcyclopentadienyl derivatives
(6) (a) Do¨rling, A.; Go¨hre, G.; Jolly, P. W.; Kryger, B.; Rust, J.;
Vehrovnik, G. P. J. Organometallics 2000, 19, 388. (b) Okuda, J. In
Metallocenes; Togni, A., Halterman R. L., Eds.; Wiley-VCH: Weinheim,
1998; p 415. (c) Zhang, H.; Ma, J.; Qian, Y.; Huang, J. Organometallics
2004, 23, 5861. (d) Huang, J.; Wu, T.; Qian, Y. Chem. Commun. 2003,
2816. (e) Deckers, P. J. W.; Hessen, B.; Teuben, J. H. Angew. Chem., Int.
Ed. 2001, 40, 2516. (f) Kohl, G.; Rudolph, R.; Pritzkow, H.; Enders, M.
Organometallics 2005, 24, 4774, and references therein. (g) Esteruelas, M.
A.; Lo´pez, A. M.; Mateo, A. C.; Onate, E. Organometallics 2005, 24, 5084,
and references therein.
* To whom correspondence should be addressed. Fax: +44(0)-
(1) Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem. ReV.
2000, 100, 39.
(2) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290.
(3) See for example: (a) Li, W.; Sun, H.; Chen, M.; Wang, Z.; Hu, D.;
Shen, Q.; Zang, Y. Organometallics 2005, 24, 5925. (b) Aihara, H.; Matsuo,
T.; Kawaguchi, H. Chem. Commun. 2003, 2204.
(7) Klei, S. R.; Tilley, T. D.; Bergman. R. G. Organometallics 2002,
21, 4905.
(4) For selected references see: (a) Abernethy, C. D.; Cowley, A. H.;
Jones, R. A.; Macdonald, C. L. B.; Shukla, P.; Thompson, L. K.
Organometallics 2001, 20, 3629 (Mn). (b) Arduengo, A. J.; Tamm, M.;
McLain S. J.; Calabrese, J. C.; Davidson, F.; Marshall, W. J. J. Am. Chem.
Soc. 1994, 116, 7927 (Sm, Eu, Y). (c) Schumann, H.; Glanz, M.; Winterfeld,
J.; Kuhn, N.; Krantz, T. Chem. Ber. 1994, 127, 2369 (Sm, Yb). (d) Simms,
R. W.; Drewitt, M. J.; Baird, M. C. Organometallics 2002, 21, 2958 (Co).
(e) Baratta, W.; Herdtweck, E.; Herrmann, W. A.; Rigo, P.; Schwartz, J.
Organometallics 2002, 21, 2101 (Ru). (f) Baudry-Barbier, D.; Andre, N.;
Dormond, A.; Pardes, C.; Richard, P.; Visseaux, M.; Zhu, C. J. Eur. J.
Inorg. Chem. 1998, 1721 (Sm). (g) Dioumaev, V. K.; Szalda, D. J.; Hanson,
J.; Franz, J. A.; Bullock, R. M. Chem. Commun. 2003, 1670 (Mo). (h)
Abernethy, C. D.; Cowley, A. H.; Jones, R. A. J. Organomet. Chem. 2000,
596, 3 (Ni). (i) Niehues, M.; Erker, G.; Kehr, G.; Schwab, P.; Fro¨hlich, R.;
Blacque, O.; Berke, H. Organometallics 2002, 21, 2905 (Ti, Zr). (j)
Buchgraber, P.; Toupet, L.; Guerchais, V. Organometallics 2003, 22, 5144
(Fe). (k) Vogt, M.; Pons, V.; Heinekey, M. D. Organometallics 2005, 24,
1832 (Ir). (l) Jensen, V. R.; Angermund, K.; Jolly, P. W. Organometallics
2000, 19, 403 (Cr). (m) Abernethy, C. D.; Jason, A. C. Clyburne, J. A. C.;
Cowley, A. H.; Jones, R. A. J. Am. Chem. Soc. 1999, 121, 2329 (Ni, Cr).
(n) Huang, J.; Jafarpour, L.; Hillier, A. C.; Stevens, E. D.; Nolan, S. P.
Organometallics 2001, 20, 2878 (Ru). (o) Roy A.; Kelly, R. A.; Scott, N.
M.; Diez-Gonzalez, S.; Edwin D.; Stevens, E. D.; Nolan, S. P. Organo-
metallics 2005, 24, 3442 (Ni). (p) Fooladi, E.; Dalhus, B.; Tilset, M. Dalton
Trans. 2005, 3909 (Co, Rh). (q) Hanasaka, F.; Fujita, K.; Yamaguchi, R.
Organometallics 2004, 23, 1490 (Ir). (r) Hanasaka, F.; Fujita, K.; Yamagu-
chi, R. Organometallics 2005, 24, 3422 (Ir).
(8) Sloane C. S.; Weinberger, D. A.; Mirkin, C. A. Prog. Inorg. Chem.
1999, 48, 233.
(9) Deppner, M.; Burger, R.; Alt, H. G. J. Organomet. Chem. 2004, 689,
1194.
(10) Kukral, J.; Lehmus, P.; Leskela, M.; Rieger, B. Eur. J. Inorg. Chem.
2002, 1349.
(11) Other alkyl- or aryl-imidazoles react similarly.
(12) (a) Spectroscopic data for (IndH-NHC-H)Br: NMR (CDCl3), 1H:
δ, 10.13 (1H, s, imidazolium-H); 8.01 (1H, s, indene aromatic), 7.43-7.36
(3H, m, indene aromatic); 7.23-7.11 (5H, m, indene and DiPP aromatic);
6.99 (1H, s, backbone imidazolium); 6.48 (1H, s, backbone imidazolium);
5.10 (2H, t, J ) 6.5 Hz, imid-CH2CH2-ind); 3.30 (2H, t, J ) 6.5 Hz, imid-
CH2CH2-ind); 3.21 (2H, s, indenyl-CH2); 2.02 (2H, sept, J ) 7 Hz,
(CH3)2CH); 1.06 (6H, d, J ) 7 Hz, (CH3)2CH)); 0.97 (6H, d, J ) 7 Hz,
(CH3)2CH)). 13C{1H}: δ, 144.3, 143.1, 137.8, 137.1, 130.8, 127.2, 125.4,
124.3, 124.2, 123.6, 123.0, 122.8, and 118.0 (all aromatic), 48.1 (imid-
CH2CH2-ind), 37.1 (imid-CH2CH2-ind), 27.6 (CH3)2CH); 27.6(CH2), 23.1
((CH3)2CH). (b) Spectroscopic data for (FlH-NHC-H)Br: NMR, (CDCl3);
1H: δ, 10.45 (1H, s, imid-H); 7.75 (2H, d, J ) 7.5 Hz, fluorene) 7.63 (2H,
d, J ) 8.0 Hz, fluorene); 7.46 (1H, t, J ) 8.5 Hz, DiPP); 7.37 (2H, t, J )
7.5 Hz, fluorene); 7.29 (2H, d, J ) 7.5 Hz, fluorene); 7.23 (2H, d, J ) 8.0
Hz, DiPP); 7.16 (1H, s, backbone imidazolium); 6.90 (1H, s, backbone
imidazolium); 4.46 (2H, m, imid-CH2CH2-fl), 4.19 (1H, t, J ) 5.0 Hz,
fluorenyl-H); 2.9 (2H, m, 2H, m, imid-CH2CH2-fl); 2.15 (2H, sept, J ) 6.5
Hz, CH(CH3)2); 1.19 (6H, d, J ) 6.5 Hz, CH(CH3)2); 1.19 (6H, d, J ) 6.5
Hz, CH(CH3)2). 13C{1H}: δ, 145.2 (aromatic), 145.1 (aromatic), 141.0
(aromatic), 138.1 (imidazolium-CH), 131.8 (backbone imidazolium), 130.1
(aromatic), 127.7 (backbone imidazolium), 127.5 (aromatic) 124.8 (aro-
matic), 124.5 (aromatic), 123.6 (aromatic), 123.2 (aromatic), 120.1 (aro-
matic), 47.6 (imid-CH2CH2-fl), 44.9 (fluorenyl-CH) 33.9 (imid-CH2CH2-
fl), 28.5 (CH(CH3)2, 24.4 (CH(CH3)2, 24.2 (CH(CH3)2)2.
(5) (a) Jutzi, P.; Redeker, T. Eur. J. Inorg. Chem. 1998, 663. (b)
Butenscho¨n, H. Chem. ReV. 2000, 100, 1527. (c) Siemeling, U. Chem. ReV.
2000, 100, 1495. (d) Qian, Y.; Huang, J.; Bala, M. D.; Lian, B.; Zhang, H.;
Zhang, H. Chem. ReV. 2003, 103, 2633. (e) Mu¨ller, C.; Vos, D.; Jutzi, P.
J. Organomet. Chem. 2000, 600, 127.
10.1021/om051017z CCC: $33.50 © 2006 American Chemical Society
Publication on Web 02/11/2006