(France) for the post-doctoral grant to TRK. We wish to thank
Ce´dric Rouxel for his contribution to synthesis, and Adrien Gilot
and Manuel Parent for their help in setting up the TPEF
experiment.
Notes and references
{ TPA data derived from femtosecond measurements.
§ TPEF measurements were performed under excitation with 150 fs pulses
from a Ti:sapphire laser, using the protocol of Xu and Webb,21 taking into
account refractive index effects.22
1 (a) S. Kawata, H.-B. Sun, T. Tanaka and K. Takada, Nature, 2001, 412,
697; (b) W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack,
C. K. Ober, J. W. Perry and S. R. Marder, Science, 2002, 296, 1106.
2 (a) D. A. Parthenopoulos and P. M. Rentzepis, Science, 1989, 245, 843;
(b) J. H. Strickler and W. W. Webb, Opt. Lett., 1991, 16, 1780.
3 J. D. Bhawalkar, N. D. Kumar, C. F. Zhao and P. N. Prasad, J. Clin.
Laser Med. Surg., 1997, 15, 201.
Fig. 3 TPA spectra of dendrimers G1–G4 and model chromophore 1
determined by femtosecond TPEF measurements in toluene.
4 (a) G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt,
R. McKellar and A. G. Dillard, Opt. Lett., 1995, 20, 435; (b)
J. E. Ehrlich, X. L. Wu, I. Y. S. Lee, Z. Y. Hu, H. Ro¨ckel,
S. R. Marder and J. W. Perry, Opt. Lett., 1997, 22, 1843.
5 W. Denk, J. H. Strickler and W. W. Webb, Science, 1990, 248, 73.
6 D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez,
F. W. Wise and W. W. Webb, Science, 2003, 300, 1434.
7 M. Dahan, S. Levi, C. Luccardini, P. Rostaing, B. Riveau and A. Triller,
Science, 2003, 302, 442.
8 D. J. Bharali, D. W. Lucey, H. Jayakumar, H. E. Pudavar and
P. N. Prasad, J. Am. Chem. Soc., 2005, 127, 11364.
9 (a) M. Drobizhev, A. Karotki, A. Rebane and C. W. Spangler, Opt.
Lett., 2001, 26, 1081; (b) M. Drobizhev, A. Karotki, Y. Dzenis,
A. Rebane, Z. Suo and C. W. Spangler, J. Phys. Chem. B, 2003, 107,
7540; (c) O. Mongin, J. Brunel, L. Porre`s and M. Blanchard-Desce,
Tetrahedron Lett., 2003, 44, 2813.
10 A. Adronov, J. M. J. Fre´chet, G. S. He, K.-S. Kim, S.-J. Chung,
J. Swiatkiewicz and P. N. Prasad, Chem. Mater., 2000, 12, 2838.
11 D. W. Brousmiche, J. M. Serin, J. M. J. Fre´chet, G. S. He, T.-C. Lin,
S.-J. Chung, P. N. Prasad, R. Kannan and L.-S. Tan, J. Phys. Chem. B,
2004, 108, 8592.
12 W. R. Dichtel, J. M. Serin, C. Edder, J. M. J. Fre´chet, M. Matuszewski,
L.-S. Tan, T. Y. Ohulchanskyy and P. N. Prasad, J. Am. Chem. Soc.,
2004, 126, 5380.
13 (a) L. Ventelon, L. Moreaux, J. Mertz and M. Blanchard-Desce, Chem.
Commun., 1999, 2055; (b) L. Ventelon, S. Charier, L. Moreaux, J. Mertz
and M. Blanchard-Desce, Angew. Chem., Int. Ed., 2001, 40, 2098; (c)
O. Mongin, L. Porre`s, L. Moreaux, J. Mertz and M. Blanchard-Desce,
Org. Lett., 2002, 4, 719; (d) O. Mongin, M. Charlot, C. Katan, L. Porre`s,
M. Parent, T. Pons, J. Mertz and M. Blanchard-Desce, Proc. SPIE-Int.
Soc. Opt. Eng., 2004, 5516, 9.
occurs. The TPA spectrum of monomeric chromophore 1 was also
determined for comparison. As clearly seen from Fig. 3, the TPA
cross-section increases linearly with the growing number of
chromophores in each generation, leading to very large TPA
cross sections, comparable to inorganic QDs. The additive
behaviour indicates that the molecular responses of each individual
chromophore located on the periphery remain unaffected (as could
be expected from the absence of significant interactions in the
ground state). In contrast molecular aggregation of individual
chromophores (in a solvent promoting aggregation) has been
shown to lead to TPA loss.17 The confinement strategy based on
the covalent grafting on a dendritic architecture thus allows
avoidance of any deleterious effects on TPA as a result of the
aggregation of chromophores in a spontaneous manner. As a
result, the maximum value (55 900 GM at 705 nm) obtained for
G4 is comparable to the s2 value measured by Webb and co-
workers6 for the best reported luminescent TP markers, semi-
conductor quantum dots. It should also be stressed that organic
‘‘nanodot’’ G4 is about the same size (its radius can be estimated to
be about 4 nm18) as these QDs, demonstrating that the organic
route to bright nanoobjects with TPEF cross-sections as high as
QDs is viable. In addition, the phosphorous dendrimers have been
shown to have very low toxicity,19 a major advantage for
bioimaging applications.
In conclusion, the present results demonstrate that organic
‘‘nanodots’’ represent a promising approach towards fluorescent
markers competitive and complementary to semiconductor QDs
for TPEF imaging-based applications. In addition the modular
route allows access to a variety of organic nanodots with different
fluorophores, allowing tuning of the photoluminescence proper-
ties. We have validated the proposed strategy with quadrupolar
type chromophores that are blue-emitters. Such a route could also
be applied to the grafting of quadrupoles that are green-emitters or
yellow-emitters and show broader (and even higher) TPA.13b
Further functionalisation may also be achieved. In particular
adding supplementary layers and decorating the periphery with
ammonium groups would yield hydrosoluble dendrimers.20
We gratefully acknowledge financial support from Rennes
Me´tropole (‘‘Allocation d’Installation Scientifique’’ awarded to
MBD and MHVW). JPM thanks the Ministe`re de la Recherche
14 (a) C. Galliot, C. Larre´, A.-M. Caminade and J.-P. Majoral, Science,
1997, 277, 1981; (b) J.-P. Majoral and A.-M. Caminade, Chem. Rev.,
1999, 99, 845; (c) J.-P. Majoral, A.-M. Caminade and V. Maraval,
Chem. Commun., 2002, 2929; (d) A.-M. Caminade and J.-P. Majoral,
Acc. Chem. Res., 2004, 37, 341.
15 N. Launay, A.-M. Caminade, R. Lahana and J.-P. Majoral, Angew.
Chem., Int. Ed. Engl., 1994, 33, 1589.
16 D. A. Oulianov, I. V. Tomov, A. S. Dvornikov and P. M. Rentzepis,
Opt. Commun., 2001, 191, 235.
17 H. Y. Woo, B. Liu, B. Kohler, D. Korystov, A. Mikhailovsky and
G. C. Bazan, J. Am. Chem. Soc., 2005, 127, 14721.
18 M. Slany, M. Bardaji, M.-J. Casanove, A.-M. Caminade, J.-P. Majoral
and B. Chaudret, J. Am. Chem. Soc., 1995, 117, 9764.
19 M. Maszewska, J. Leclaire, M. Cieslak, B. Nawrot, A. Okruszek,
A.-M. Caminade and J.-P. Majoral, Oligonucleotides, 2003, 13, 193.
20 A.-M. Caminade and J.-P. Majoral, Prog. Polym. Sci., 2005, 30, 491.
21 C. Xu and W. W. Webb, J. Opt. Soc. Am. B, 1996, 13, 481.
22 M. H. V. Werts, N. Nerambourg, D. Pe´le´gry, Y. Le Grand and
M. Blanchard-Desce, Photochem. Photobiol. Sci., 2005, 4, 531.
This journal is ß The Royal Society of Chemistry 2006
Chem. Commun., 2006, 915–917 | 917