Acentric [(Aminophenyl)azo]pyridinium Superlattices
J. Am. Chem. Soc., Vol. 118, No. 34, 1996 8035
terization over the past decade.8 Numerous self-assembled
systems have been investigated, including disulfides and thiols
on gold,9 carboxylic acids on metal oxides,10 trichloro- and
trialkoxysilanes on oxides,11 and phosphonates on metal phos-
phonate surfaces.7,12 Spontaneous and sequential adsorption of
appropriately derivatized adsorbates onto substrates in a self-
limiting fashion can yield thin films with uniform polar orders
in individual layers and therefore represents an attractive
approach to the construction of intrinsically acentric chro-
mophoric superlattices. Unfortunately, while the routes to self-
assembled monolayers are very well developed, few efficient
routes to structurally regular self-assembled multilayers have
been devised.13 Among them, self-assembled siloxane and metal
phosphonate systems are promising candidates for constructing
acentric superlattices. Several years ago, we reported synthetic
routes to the first SHG-active multilayer structures using an
attractive covalent siloxane self-assembly approach; highly
regular and highly nonlinear (ø(2) ∼ 200 pm/V at ω0 ) 1064
nm) self-assembled stilbazolium (I) multilayers were constructed
in a regular, layer-by-layer fashion.6a Katz et al. later showed
that acentric chromophoric multilayers could also be obtained
using a zirconium phosphate/phosphonate self-assembly ap-
proach.7
Recently, we reported a new “topotactic” pathway for the
preparation of self-assembled stilbazolium (I) and [(aminophe-
nyl)ethynyl]pyridinium (II) multilayers with greatly improved
synthetic efficiency, structural regularity, and second-order
nonlinear optical response.14 A full account of the synthesis,
microstructures, and NLO response characteristics of these
materials will be presented elsewhere.14d Our studies also
indicated that both the chemical and photophysical properties
of these self-assembled materials strongly depend on the
chromophore molecular architectures. For example, the stil-
bazolium monolayers not only exhibit packing geometries very
different from those of the [(aminophenyl)ethynyl]pyridinium
monolayers15 but also exhibit ø(2) responses up to 10× larger
than those of the latter.6c,15 Therefore, it would be of great
interest to investigate the properties of self-assembled super-
lattices in which the chromophore conjugative pathway, hyper-
polarizability, shape, and potential chemical/photochemical
reactivity were further modified. To this end, we have designed
a new [(aminophenyl)azo]pyridinium chromophore (III) for
incorporation into siloxane self-assembled multilayer structures.
This azo chromophore can potentially exhibit additional ad-
vantages such as enhanced thermal, oxidative, and photochemi-
cal stability. For example, previous studies have suggested that
diphenylazo NLO chromophores are more thermally stable than
the stilbene analogs.16 In addition, the [(aminophenyl)azo]-
pyridinium molecules should be resistant to degradative [2 +
2] cycloaddition pathways that are potential complications in
some stilbazolium systems and that would result in diminished
NLO activity.17 We present in this paper the synthesis of the
new [(aminophenyl)azo]pyridine chromophore precursor and its
efficient self-assembly into [(aminophenyl)azo]pyridinium su-
perlattices. We report detailed characterization of these self-
assembled [(aminophenyl)azo]pyridinium mono- and mutlilayers
using X-ray photoelectron and transmission optical spec-
troscopies, spectroscopic ellipsometry, X-ray reflectivity, ad-
vancing contact angle measurements, and polarized second
harmonic generation (SHG) measurements. It will be seen that
these readily synthesized superlattices exhibit very high second-
order nonlinear response and high structural regularity as well
as high chemical/photochemical stability.18
(6) (a) Li, D.; Ratner, M. A.; Marks, T. J.; Zhang, C.; Yang, J.; Wong,
G. K. J. Am. Chem. Soc. 1990, 112, 7389-7390. (b) Yitzchaik, S.; Roscoe,
S. B.; Kakkar, A. K.; Allan, D. S.; Marks, T. J.; Xu, Z.; Zhang, T.; Lin,
W.; Wong, G. K. J. Phys. Chem. 1993, 97, 6958-6960. (c) Roscoe, S. B.;
Yitzchaik, S.; Kakkar, A. K.; Marks, T. J.; Lin, W.; Wong, G. K. Langmuir
1994, 10, 1337-1339. (d) Yitzchaik, S.; Marks, T. J. Acc. Chem. Res.
1996, 29, 197-202.
Experimental Section
(7) (a) Katz, H. E.; Scheller, G.; Putvinscki, T. M.; Schilling, M. L.;
Wilson, W. L.; Chidsey, C. E. D. Science 1991, 254, 1485-1487. (b) Katz,
H. E.; Wilson, W. L.; Scheller, G. J. Am. Chem. Soc. 1994, 116, 6636-
6640.
(8) (a) Ulman, A. An Introduction to Ultrathin Organic Films; Academic
Press: New York, 1991; Part 3. (b) Swalen, J. D.; Allara, D. L.; Andrade,
J. D.; Chandross, E. A.; Caroff, S.; Israelachvili, J.; McCarthy, T. J.; Murray,
R.; Pease, R. F.; Rabolt, J. F.; Wynne, K. J.; Yu, H. Langmuir 1987, 3,
932-950. (c) Dubois, L. H.; Nuzzo, R. G. Annu. ReV. Phys. Chem. 1992,
43, 437-463. (d) Bell, C. M.; Yang, H. C.; Mallouk, T. E. In Materials
Chemistry: An Emerging Discipline; Interrante, L. V., Casper, L. A., Ellis,
A. B., Eds.; Adv. Chem. Ser. 245; American Chemical Society: Washington,
D.C., 1995; pp 212-230.
(9) (a) Nuzzo, R. G.; Allara, D. L. J. Am. Chem. Soc. 1983, 105, 4481-
4483. (b) Nuzzo, R. G.; Fusco, F. A.; Allara, D. L. J. Am. Chem. Soc.
1987, 109, 2358-2368. (c) Bain, C. D.; Whitesides, G. M. Angew. Chem.,
Int. Ed. Engl. 1989, 28, 506-512. (d) Bain, C. D.; Troughton, E. B.; Tao,
Y.-T.; Evall, J.; Whitesides, G. M.; Nuzzo, R. G. J. Am. Chem. Soc. 1989,
111, 321-335.
(10) (a) Allara, D. L.; Atre, S. V.; Elliger, C. A.; Snyder, R. G. J. Am.
Chem. Soc. 1991, 113, 1852-1854. (b) Allara, D. L.; Nuzzo, R. G.
Langmuir 1985, 1, 45-52.
(11) (a) Wasserman, S. R.; Tao, Y.-T.; Whitesides, G. M. Langmuir 1989,
5, 1074-1087. (b) Maoz, R.; Sagiv, J. Langmuir 1987, 3, 1034-1044. (c)
Pomerantz, M.; Segmuller, A.; Netzer, L.; Sagiv, J. Thin Solid Films 1985,
132, 153-162.
(12) (a) Zeppenfeld, A. C.; Fiddler, S. L.; Ham, W. K.; Klopfenstein, B.
J.; Page, C. J. J. Am. Chem. Soc. 1994, 116, 9158-9165. (b) Cao, G.;
Hong, H.-G.; Mallouk, T. E. Acc. Chem. Res. 1992, 25, 420-425. (c)
Thompson, M. E. Chem. Mater. 1994, 6, 1168-1175.
(13) Thoden van Velzen, E. U. Ph.D. Thesis, University of Twente, 1994,
Chapter 1.
The synthesis, purification, and characterization of the reagents (3-
iodopropyl)trichlorosilane (3-IC3H6SiCl3) and 4-[[4-[N,N-bis(hydrox-
ylethyl)amino]phenyl]azo]pyridine can be found in the supporting
information.
(14) (a) Lin, W.; Yitzchaik, S.; Lin, W.; Malik, A.; Durbin, M. K.;
Richter, A. G.; Wong, G. K.; Dutta, P.; Marks, T. J. Angew. Chem., Int.
Ed. Engl. 1995, 34, 1497-1499. (b) Yitzchaik, S.; Lin, W.; Marks, T. J.;
Lin, W.; Wong, G. K. Polym. Mater. Sci. Eng. 1995, 72, 217-218. (c)
Lin, W.; Marks, T. J.; Yitzchaik, S.; Lin, W.; Wong, G. K. Mat. Res. Soc.
Sympos. Proc., in press. (d) Lin, W.; Malinsky, J. E.; Marks, T. J.; Lin,
W.; Wong, G. K. Manuscript in preparation.
(15) Roscoe, S. B.; Kakkar, A. K.; Marks, T. J.; Malik, A.; Durbin, M.
K.; Lin, W.; Wong, G. K.; Dutta, P. Langmuir, in press.
(16) (a) Moylan, C. R.; Swanson, S. A.; Walsh, C. A.; Thackara, J. I.;
Twieg, R. J.; Miller, R. D.; Lee, V. Y. Nonlinear Optical Properties of
Organic Materials VI. In SPIE Proc. 1993, 2025, 192-201. (b) Twieg,
R. J.; Burland, D. M.; Hedrick, J. L.; Lee, V. Y.; Miller, R. D.; Moylan, C.
R.; Volksen, W.; Walsh, C. A. Mat. Res. Soc. Sympos. Proc., in press.
(17) (a) Zhao, X.-M.; Perlstein, J.; Whitten, D. G. J. Am. Chem. Soc.
1994, 116, 10463-10467. (b) Takagi, K.; Shibata, S.; Oguri, S.; Sawaki,
Y.; Suzuoki, Y.; Segi, T. Chem. Lett. 1993, 2103-2106. (c) Usami, H.;
Takagi, K.; Sawaki, Y. J. Chem. Soc., Faraday Trans. 1992, 88, 77-81.
(d) Takagi, K.; Suddaby, B. R.; Vadas, S. L.; Backer, C. A.; Whitten, D.
G. J. Am. Chem. Soc. 1986, 108, 7865-7867. (e) Quina, F. H.; Whitten,
D. G. J. Am. Chem. Soc. 1977, 99, 877-883.
(18) After completion of this work, a communication on Langmuir-
Blodgett films based on lanthanide salts of the (E)-1-methyl-4-[[4-
(dihexadecylamino)phenyl]azo]pyridinium chromophore appeared. See:
Gao, L. H.; Wang, K. Z.; Huang, C. H.; Zhao, X. S.; Xia, X. H.; Li, T. K.;
Xu, J. M. Chem. Mater. 1995, 7, 1047-1049.