1548
Organometallics 2006, 25, 1548-1550
Synthesis and Characterization of η5-1,2,4-Diazaphospholide
Complexes of Ruthenium†
Wenjun Zheng,* Guozhen Zhang,‡ and Kangnian Fan‡
Department of Chemistry, Fudan UniVersity, Handan Road 220,
Shanghai 200433, People’s Republic of China
ReceiVed January 16, 2006
Chart 1. 1H-1,2,4-Diazaphospholes (a) and
Summary: Treatment of the 1,2,4-diazaphospholide anions [3,5-
tBu2dp]- (1) and [3,5-Ph2dp]- (2) with [Cp*RuCl]4 affords the
two complexes [(η5-3,5-tBu2dp)RuCp*] (3) and [(η5-3,5-Ph2dp)-
RuCp*] (4) (dp ) 1,2,4-diazaphospholide), which are the first
examples of sandwich complexes deriVed from 1,2,4-diazaphos-
pholide ligands. The X-ray crystal structure analysis of 3 reVeals
that the metal atom is π-bonded to the 1,2,4-diazaphospholide
ligand. The bonding was rationalized by DFT calculations.
1,2,4-Diazaphospholides (b)
of recent reports on complexes with phosphorus- and nitrogen-
containing aromatic heterocyclic ligands as well as the emerging
application to molecular materials and catalysis,8-11 the use of
1,2,4-diazaphospholide ions as ligands shows promise as an
attractive developing area. Therefore, we set out to study metal
complexes with 1,2,4-diazaphospholide ligand coordination.
Herein, we report the synthesis and characterization of two
ruthenium(II) complexes bearing these ligands in η5 coordina-
tion, which are, to the best of our knowledge, the first such
complexes with this coordination mode.
Treatment of 3,5-di-tert-butyl-1,2,4-diazaphophole (H[3,5-
tBu2dp])1 and 3,5-diphenyl-1,2,4-diazaphosphole (H[3,5-Ph2-
dp])1 with metallic potassium in THF (tetrahydrofuran) afforded
potassium 3,5-di-tert-butyl-1,2,4-diazaphospholide ([3,5-tBu2-
dp]K (1), 93%) and potassium 3,5-diphenyl-1,2,4-diazaphos-
pholide-THF ([3,5-Ph2dp]K‚0.67THF (2), 88%), respectively,
as white solids with the evolution of hydrogen. Complex 1 is
soluble only in THF, while compound 2 is somewhat soluble
in ether. Both complexes were characterized by spectral and
analytical methods.12
1H-1,2,4-Diazaphospholes have been known for more than
20 years (Chart 1).1-5 As anions with six π electrons, the
deprotonated 1H-1,2,4-diazaphospholes exhibit evidence of a
certain degree of aromatic delocalization and are the heterocyclic
analogues of the cyclopentadienyl ligand (Cp-).5 The electron
distribution within the heterocycle, however, is uneven and
presents a charge shift toward the more electronegative nitrogen
atoms, on the basis of DFT calculations.6 The unique electronic
structure as well as the presence of donor lone pairs on the
heteroatoms make the 1,2,4-diazaphospholides potentially in-
teresting ligands for the metals across the periodic table. By
virtue of the electronic requirements, the resulting complexes
of the 1,2,4-diazaphospholides may present coordinations of the
types η1(N), η1(N1):η1(N2), η2(N1,N2), η1(N1):η1(N2):η1(P), and
η2(N1,N2):η1(P) via the nitrogen or/and phosphorus atom(s), of
the η5 type via the π-electron system, or even a combination of
the two. In comparison to the cyclopentadienyl ligand, however,
the related isoelectronic heterocyclic 1,2,4-diazaphospholide
ligands have received much less attention. There is one report
by Gudat and co-workers of the lithium complex [(η1:η1-dp)-
(µ-Li)(DME)]2, bearing a η1:η1-1,2,4-diazaphospholide ligand
(DME ) 1,2-dimethoxyethane),7 but so far other coordination
modes have not been substantiated. As attested to by the number
(7) Szarvas, L.; Bajko, Z.; Fusz, S.; Burck, S.; Daniels, J.; Nieger, M.;
Gudat, D. Z. Anorg. Allg. Chem. 2002, 628, 2303.
(8) Selected recent references for the complexes with phosphorus- and
nitrogen-containing aromatic heterocyclic ligands are as follows. (a)
Phospholyl complexes: Burney, C.; Carmichael, D.; Forissier, K.; Green,
J. C.; Mathey, F.; Ricard, L. Chem. Eur. J. 2005, 11, 5381. (b) 1,3,5-
Triphospholyl complexes: Clentsmith, G. K. B.; Cloke, F. G. N.; Green, J.
C.; Hanks, J.; Hitchcock, P. B.; Nixon, J. F. Angew. Chem., Int. Ed. 2003,
42, 1038. Clark, T.; Elvers, A.; Heinemann, F. W.; Hennemann, M.; Zeller,
M.; Zenneck, U. Angew. Chem., Int. Ed. 2000, 39, 2087. Hitchcock, P. B.;
Johnson, J. A.; Nixon, J. F. Organometallics 1995, 14, 4382. (c) Pyrrolyl
complexes: Ascenso, J. R.; Dias, A. R.; Ferreira, A. P.; Galva˜o, A. C.;
Salema, M. S.; Veiros, L. F. Inorg. Chim. Acta 2003, 356, 249. (d)
Pyrazolato complexes: Zheng, W. J.; Mo¨sch-Zanetti, N. C.; Blunk, T.;
Roesky, H. W.; Noltemeyer, M.; Schmidt, H.-G. Organometallics 2001,
20, 3299. (e) Triazolato and tetrazolato complexes: Zheng, W. J.; Heeg,
M. J.; Winter, C. H. Angew. Chem., Int. Ed. 2003, 42, 2761 and references
therein.
(9) Reviews for phospholyl complexes as catalysts and molecular material
building blocks: (a) Mathey, F. Angew. Chem., Int. Ed. 2003, 42, 1578.
(b) Mathey, F. J. Organomet. Chem. 2002, 646, 15.
(10) Selected recent references for pyrrolyl complexes in catalysis: (a)
Hansen, J. G.; Johannsen, M. J. Org. Chem. 2003, 68, 1266. (b) Lo, M. M.
C.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 4572.
(11) Selected recent references for pyrazolato complexes in catalysis:
(a) Baricelli, P. J.; Lo´pez-Linares, F.; Bruss, A.; Santos, R.; Lujano, E.;
Sa´nchez-Delgado, R. A. J. Mol. Catal. A: Chem. 2005, 239, 130. (b) Most,
K.; Hossbach, J.; Vidoviæ, D.; Magull, J.; Mo¨sch-Zanetti, N. C. AdV. Synth.
Catal. 2005, 347, 463. (c) Torres, F.; Sola, E.; Elduque, A.; Martinez, A.
P.; Lahoz, F. J.; Oro, L. A. Chem. Eur. J. 2000, 6, 2120.
† Dedicated to Professor Alfred Schmidpeter.
* To whom correspondence should be addressed. E-mail: wjzheng@
fudan.edu.cn.
‡ Physical Chemistry.
(1) Schmidpeter, A.; Willhalm, A. Angew. Chem., Int. Ed. Engl. 1984,
23, 903.
(2) In the solid state, 1,2,4-diazaphosphole and 3,5-di-tert-butyl-1,2,4-
diazaphosphole are associated via NH‚‚‚N hydrogen bonds and feature a
helix or dimer: Polborn, K.; Schmidpeter, A.; Ma¨rkl, G. Willhalm, A. Z.
Naturforsch. 1999, 54B, 187.
(3) Schmidpeter, A.; Karaghiosoff, K. Azaphospholes: In Rings, Clusters
and Polymers of Main Group and Transition Elements; Roesky, H. W.,
Ed.; Elsevier: Amsterdam, The Netherlands, 1989.
(4) (a) Nyula´szi, L.; Veszpre´mi, T.; Re´ffy, J. J. Phys. Chem. 1993, 97,
4011. (b) Nyula´szi, L.; Veszpre´mi, T.; Re´ffy, J.; Burkhardt, B.; Regitz, M.
J. Am. Chem. Soc. 1992, 114, 9080.
(5) Schmidpeter, A. In ComprehensiVe Heterocyclic Chemistry II;
Katritzky, R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon Press: Oxford,
U.K., 1996.
(6) Our DFT calculations followed by natural bond orbital (NBO)
population analysis on the charge distribution of the 3,5-di-tert-butyl-1,2,4-
diazaphospholide anion indicated that two nitrogen atoms gain more weight
(N (-0.37), P (0.17)); see the Supporting Information for the calculations
on [3,5-tBu2dp]- ligand.
10.1021/om060041p CCC: $33.50 © 2006 American Chemical Society
Publication on Web 03/01/2006