in very low yields.4 Our group has developed an efficient
way for preparing a variety of HBCs 2 through a mild
intramolecular oxidative cyclodehydrogenation of hexaphe-
nylbenzene precursors 1 (Scheme 1).5 Several suitable
been synthesized, and functional groups such as esters at
the end of aliphatic chains can also be introduced. However,
the synthesis of HBC molecules with lower symmetry such
as D3h met with difficulties.9 In addition, the cyclodehydro-
genation of HPB precursors is sometimes limited by the
electron-rich and -poor characters of the substitutions.10 To
broaden the scope of HBC analogues, we have found the
use of other oligophenylene precursors such as 1,3,5-tris-
(2′-biphenyl)benzene (4) or 1,4-bis-(2′-biphenyl)yl-2,5-diphe-
nylbenzene (5) (Scheme 2). Although they differ from HPBs
Scheme 1. General Synthesis of HBCs by Oxidative
Cyclodehydrogenation of Hexaphenylbenzene Precursors
Scheme 2. Potential Synthesis of HBCs from Precursors 4a-c
and 5a,b
oxidant systems have been utilized for these transformations
including CuCl2/AlCl3, Cu(OTf)2/AlCl3/CS2, and FeCl3/CH3-
NO2. Through detailed studies of the oxidative cyclodehy-
drogenation, the parent hexaphenylbenzene (HPB) was found
to exclusively cyclodehydrogenize in an intramolecular
fashion. Furthermore, the intermediate phenyldibenzo[fg,ij]-
phenanthro[9,10,1,2,3-pqrst]pentaphene (3) could be sepa-
rated, indicating that the cyclodehydrogenation proceeded
in a stepwise process.6 Recently, theoretical studies have
pointed toward a radical cation mechanism for these in-
tramolecular fusion reactions. The geometry, charge, and spin
distribution of the radical cation intermediates are decisive
for the step-by-step bonding formation mechanism.7
in topology, they can undergo similar intramolecular cyclo-
dehydrogenations to afford HBC molecules. Following this
concept, here we describe an efficient synthetic method for
the preparation of known HBCs (including 6a) and unknown
derivatives such as iodo compounds 6b,c and the D3h or D2h
symmetric species 7.
As shown in Scheme 3, 1,3,5-tris-(2′-bromophenyl)-
benzene (9) was synthesized in 72% yield by trifluo-
romethanesulfonic-acid-mediated trimerization of 2-bro-
moacetophenone (8). It is worthy to note that other Lewis
acids typically used for condensation trimerizations of
substituted acetophenones such as SiCl4 and TiCl4 were
ineffective or problematic.11 Molecule 9 constitutes an
important building block for subsequent palladium-catalyzed
HPBs can be synthesized by the cyclotrimerization of
diphenylacetylene or the Diels-Alder reaction between
diphenylacetylene derivatives and tetraphenylcyclopentadi-
enones.8 D6h symmetric or unsymmetric HBC molecules with
iodo, iodophenyl, alkyl, and alkylphenyl substitutions have
(3) Watson, M. D.; Fechtenko¨ter, A.; Mu¨llen, K. Chem. ReV. 2001, 101,
1267-1300.
(4) (a) Clar, E.; Ironside, C. T. Proc. Chem. Soc. 1958, 150. (b) Clar,
E.; Ironside, C. T.; Zander, M. J. Chem. Soc. 1959, 142-147. (c) Halleux,
A.; Martin, R. H.; King, G. S. D. HelV. Chim. Acta 1958, 129, 1177-
1183. (d) Hendel, W.; Khan, Z. H.; Schmidt, W. Tetrahedron 1986, 42,
1127-1134.
(5) (a) Stabel, A.; Herwig, P.; Mu¨llen, K.; Rabe, J. P. Angew. Chem.
1995, 107, 1768-1770; Angew. Chem., Int. Ed. Engl. 1995, 34, 1609-
1611. (b) Mu¨ller, M.; Ku¨bel, C.; Mu¨llen, K. Chem.-Eur. J. 1998, 4, 2099-
2109.
(6) Ku¨bel, C.; Eckhardt, K.; Enkelmann, V.; Wegner, G.; Mu¨llen, K. J.
Mater. Chem. 2000, 10, 879-886.
(7) (a) Rempala, P.; Kroulik, J.; King, B. T. J. Am. Chem. Soc. 2004,
126, 15002-15003. (b) Stefano, M. D.; Negri, F.; Carbone, P.; Mu¨llen, K.
Chem. Phys. 2005, 314, 85-99.
(8) (a) Hyatt, J. A. Org. Prep. Proced. Int. 1991, 23, 460-463. (b)
Herwig, P.; Kayser, C. W.; Mu¨llen, K.; Spiess, H. W. AdV. Mater. 1996, 8,
510-513. (c) Fechtenko¨tter, A.; Saalwa¨chter, K.; Harbison, M. A.; Mu¨llen,
K.; Spiess, H. W. Angew. Chem. 1999, 111, 3224-3228; Angew. Chem.,
Int. Ed. Engl. 1999, 38, 3039-3042. (d) Brand, J. D.; Ku¨bel, C.; Ito, S.;
Mu¨llen, K. Chem. Mater. 2000, 12, 1638-1647.
(9) (a) Wu, J.; Watson, M. D.; Mu¨llen, K. Angew. Chem., Int. Ed. 2003,
42, 5329-5333. (b) Wu, J.; Baumgarten, M.; Debije, M. G.; Warman, J.
M.; Mu¨llen, K. Angew. Chem., Int. Ed. 2004, 43, 5331-5335.
(10) (a) Lambert, C.; No¨ll, G. Angew. Chem., Int. Ed. Engl. 1998, 37,
2107-2110. Angew. Chem. 1998, 110, 2239-2242. (b) Lambert, C.; No¨ll,
G. Chem.-Eur. J. 2002, 8, 3467-3477.
(11) (a) Elmorsy, S. S.; Pelter, A.; Smith, K. Tetrahedron Lett. 1991,
32(33), 4175. (b) Elmorsy, S. S.; Khalil, A. G. M.; Girges, M. M.; Salama,
T. A. Tetrahedron Lett. 1997, 38(6), 1071. (c) Boorum, M. M.; Vasil’ev,
Y. V.; Drewello, T.; Scott, L. T. Science 2001, 294, 828. (d) Scott, L. T.;
Boorum, M. M.; McMahon, B. J.; Hagen, S.; Mack, J.; Blank, J.; Wegner,
H.; de Meijere, A. Science 2002, 295, 1500. (e) Ansems, R. B. M.; Scott,
L. T. J. Am. Chem. Soc. 2000, 122, 2719-2724. (f) Scott, L. T. Angew.
Chem., Int. Ed. 2004, 43, 4994-5007.
1146
Org. Lett., Vol. 8, No. 6, 2006