Organic & Biomolecular Chemistry
Page 14 of 15
ARTICLE
Journal Name
Grubbs’ II catalyst (1.8 mg) was added to the dienyl ester 52 (35 mg, have lost the double-bond attached to the tetrahydropyran; δH
0.044 mmol) in toluene (5.5 mL) and the mixture was warmed to 60 (C6D6) 5.01 (1 H, dd, J 10.8, 1.6, 4’’’-H), 5.51D(1OHI:,10d.d10, 3J91/7C.77O, B10.60,047’9’’K-
oC and stirred for 3 h. More catalyst (1 mg) was added and the H’), 5.98 (1 H, narrow m, 16/17-H) and 6.55 (1 H, dd, J 17.7, 10.8,
heating continued for 5.5 h. After cooling to rt, chromatography on 3’’’-H). Some dimeric products were evident from the low
neutral alumina (15:1 light petroleum:ether with 1% Et3N) gave the resolution MS; m/z (ES+) 1689 (M+ + 23, 100%).
title compound 53 (6 mg, 17%) (Found: M+ + Na, 783.4481.
C42H68O10NaSi requires M, 783.4474); δH (C6D6) −0.02 [9 H, s,
Si(CH3)3], 0.80-2.15 (29 H, m, 4-H2, 6-H2, 10-H2, 12-H2, 13-H2, 14-H2,
Ackowledgements
18-H, 20-H2, 21-H2, 22-H2, 24-H2, 2 × 8-CH3, SiCH2), 2.42 (1 H, m, 18- We thank the EPSRC for support (for R. D.) and for studentships (to
H’), 2.60 (1 H, dd, J 16.7, 9.2, 2-H), 2.92 (1 H, m, 2-H’), 3.02-3.23 (2 S. McC. and T. G.).
H, m, OCH2CH2Si), 3.34 (6 H, s, 2 × OCH3), 3.40-4.20 (7 H, m, 3-H, 5-
H, 7-H, 11-H, 15-H, 23-H, 25-H), 4.32 and 4.49 (each 1 H, d, J 11.7,
PhHCH), 4.49 (1 H, m, 25-H’), 4.78 and 4.97 (each 1 H, d, J 7.0,
Notes and references
1
2
3
1. M. Ball, A. Baron, B. Bradshaw, R. Dumeunier, M. O’Brien and
OHCHO), 5.68 (1 H, dd, J 15.3, 7.5, 16-H), 6.07 (1 H, ddd, J 15.3, 8.0,
5.4, 17-H) and 7.10-7.35 (5 H, m, ArH); δC (C6D6) −1.5, 16.7 18.3,
19.1, 21.3, 24.3, 30.1, 30.3, 32.2, 32.4, 33.6, 34.3, 39.1, 40.2, 41.2,
42.6, 43.9, 46.6, 48.2, 48.4, 60.1, 64.9, 65.2, 67.5, 71.4, 74.2, 79.3,
79.25 96.6, 98.9, 104.3, 127.3, 128.3, 128.9, 134.5, 140.0 and 171.0;
m/z (ES+) 784 (M+ + 23, 100%).
2-[(2S,3R,6S)-2,3-Dimethoxy-2-(2-methylbut-3-en-2-
yl)tetrahydropyran-6-yl]ethyl (3R,5R,7S,9S,11S,15R)-7-benzyloxy-
5,9-epoxy-11,15-epoxy-8,8-dimethyl-9-methoxy-3-(2-
E. J. Thomas, Org. Biomol. Chem., 2016, 14, 9650.
M. Ball, T. Gregson, H. Omori and E. J. Thomas, submitted to
Org. Biomol. Chem., 2017.
(a) M. Kageyama, T. Tamura, M. H. Nantz, J. C. Roberts, P.
Somfrai, D. C. Whritenour and S. Masamune, J. Am. Chem. Soc.,
1990, 112, 7407; (b) D. A. Evans, P. H. Carter, E. M. Carreira, A.
B. Charette, J. A. Prunet and M. Lautens, J. Am. Chem. Soc.,
1999, 121, 7540; (c) K. Ohmori, Y. Ogawa, T. Obitsu, Y. Ishikawa,
S. Nishiyama and S. Yamamura, Angew. Chem. Int. Ed., 2000, 39,
2290; (d) S. Manaviazar, M. Frigerio, G. S. Bhatia, M. G.
Hummersone, A. E. Aliev and K. J. Hale, Org. Lett., 2006, 8,
4477; (e) B. M. Trost and G. Dong, J. Am. Chem. Soc., 2010, 132,
16403; (f) G. E. Keck, Y. B. Poudel, T. J. Cummins, A. Rudra and J.
A. Covel, J. Am. Chem. Soc., 2011, 133, 744; (h) P. A. Wender
and A. J. Schrier, J. Am. Chem. Soc., 2011, 133, 9228; (i) Y. Lu, S.
K. Woo and M. J. Krische, J. Am. Chem. Soc., 2011, 133, 13876.
(a) P. A. Wender, C. M. Cribbs, K. F. Koehler, N. A. Sharkey, C. L.
Herald, Y. Kamano, G. R. Pettit and P. M. Blumberg, Proc. Natl.
Acad. Sci. USA., 1988, 85, 7197; (b) P. A. Wender, J. L. Baryza, C.
E. Bennett, F. C. Bi, S. E. Brenner, M. O. Clarke, J. C. Horan, C.
Kan, E. Lacôte, B. Lippa, P. G. Nell and T. M. Turner, J. Am.
Chem. Soc., 2002, 124, 13648; (c) P. A. Wender, B. A. Loy, A. J.
Schrier, Isr. J. Chem., 2011, 51, 453; (d) P. A. Wender, J. L.
Baryza, S. E. Brenner, B. A. DeChristopher, B. A. Loy, A. J. Schrier
and V. A. Verma, Proc. Natl. Acad. Sci. USA., 2011, 108, 6721; (e)
P. A. Wender, Y. Nakagawa, K. E. Near and D. Staveness, Org.
Lett., 2014, 16, 5136; (f) P. A. Wender and D. Staveness, Org.
Lett., 2014, 16, 5140; (g) B. A. Loy, A. B. Lesser, D. Staveness,
K. L. Billingsley, L. Cegelski and P. A Wender, J. Am. Chem.
Soc., 2015, 137, 3678; (h) D. Staveness, R. Abdelnabi, A. J.
Schrier, B. A. Loy, V. A. Verma, B. A. DeChristopher, K. E.
Near, J. Neyts, L. Delang, P. Leyssen and P. A. Wender, J. Nat.
Prod., 2016, 79, 675; (i) D. Staveness, R. Abdelnabi, K. E.
Near, Y. Nakagawa, J. Neyts, L. Delang, P. Leyssen and P. A.
Wender, J. Nat. Prod., 2016, 79, 680.
trimethylsilylethoxymethoxy)heptadec-16-enoate (54). Following
the procedure outlined above, the alcohol 27 (75 mg, 0.127 mmol)
gave the carboxylic acid 51. This acid was dissolved in toluene (3
mL) and triethylamine (36 µL) and 2,4,6-trichlorobenzoyl chloride
(24 µL) were added. The mixture was stirred at rt for 1 h and then
the alcohol 40 (33 mg) in toluene (4 mL) and 4-
dimethylaminepyridine (24 mg) were added. The mixture was
stirred for 30 min and saturated aqueous sodium hydrogen
carbonate (15 mL) and EtOAc (15 mL) were added. The aqueous
phase was extracted with ether (3 × 15 mL) and the organic extracts
were dried (Na2SO4) then concentrated under reduced pressure.
Chromatography (15:1 to 1:1 light petroleum:ether + 1% Et3N) of
the residue gave the title compound 54; δH (C6D6) 0.02 [9 H, s,
Si(CH3)3], 0.85-1.85 (18 H, m, 4-H2, 6-H2, 12-H2, 13-H2, 14-H2, 2’-H2,
4’’-H2, 5’’-H2, SiCH2), 1.26, 1.32, 1.36 and 1.40 (each 3 H, s, CH3),
1.95 (1 H, dd, J 16.0, 3.5, 10-H), 2.20 (1 H, dd, J 16.0, 5.5, 10-H’),
2.69 (1 H, dd, J 15.3, 5.3, 2-H), 2.86 (1 H, dd J 15.3, 6.7, 2-H’), 3.04,
3.24 and 3.30 (each 3 H, s, OCH3), 3.40-3.95 (8 H, m, 3-H, 5-H, 7-H,
11-H, 3’’-H, 6’’-H, OCH2CH2Si), 4.25-4.40 (2 H, m, 1’-H2), 4.32 and
4.48 (each 1 H, d, J 11.8, PhHCH), 4.49 (1 H, m, 15-H), 4.82 and 4.90
(each 1 H, d, J 7.0, OHCHO), 5.02 (1 H, dd, J 10.8, 1.6, 4’’’-H), 5.02-
5.14 (2 H, m, 17-H, 4’’’-H’), 5.37 (1 H, dt, J 17.3, 1.9, 17-H’), 5.90 (1
H, ddd, J 17.4, 10.7, 4.7, 16-H), 6.53 (1 H, dd, J 17.7, 10.8, 3’’’-H),
7.04-7.25 (3 H, m, ArH) and 7.34 (2 H, d, J 7.0, ArH); δC (C6D6) −1.4,
17.1, 18.2, 20.1, 23.2, 24.2, 24.5, 24.6, 30.1, 31.1, 33.3, 33.5, 35.2,
40.6, 42.0, 42.4, 43.5, 45.7, 48.5, 50.5, 54.7, 61.5, 65.6, 65.8, 67.3,
71.6, 73.7, 73.9, 78.0, 79.2, 80.2, 95.5, 101.4, 104.5, 109.8, 113.4,
127.3, 127.5, 128.4, 139.9, 140.2, 147.5 and 171.0; m/z (ES+) 865
(M+ + 18, 70%) and 816 (40).
4
5
(a) G. E. Keck, W. Li, M. B. Kraft, N. Kedei, N. E. Lewin and P. M.
Blumberg, Org. Lett., 2009, 11, 2277; (b) G. E. Keck, Y. B. Poudel,
A. Rudra, J. C. Stephens, N. Kedei, N. E. Lewin, M. L. Peach and
P. M. Blumberg, Angew. Chem. Int. Ed.. 2010, 49, 4580; (c) G. E.
Keck, Y. B. Poudel, A. Rudra, J. C. Stephens, N. Kedei, N. E. Lewin
and P. M. Blumberg, Bioorg. Med. Chem. Lett., 2012, 22, 4084;
(d) M. B. Kraft, Y. B. Poudel, N. Kedei, N. E. Lewin, M. L. Peach,
P. M. Blumberg and G. E. Keck, J. Am. Chem. Soc., 2014, 136,
13202; (e) N. Kedei, M. B. Kraft, G. E. Keck, C. L. Herald, N.
Melody, G. R. Pettit and P. M. Blumberg, J. Nat. Prod., 2015, 78
896; (f) I. P. Andrews, J. M. Ketcham, P. M. Blumberg, N. Kedei,
N. E. Lewin, M. L. Peach and M. J. Krische, J. Am. Chem. Soc.,
2014, 136, 13209.
Attempts to carry out RCM using the conditions outlined for the
synthesis of the macrolide 53, led to mixtures of compounds
containing only traces of a product containing a disubstituted (E)-
double-bond; δH (C6D6) 6.31 (1 H, dd, J 16.0, 5.5, 16-H) and 6.78 (1
H, br. d, J 16.0, 17-H). The major products appeared to have
retained the double-bond next to the geminal methyl groups but to
6
(a) G. R. Pettit, Y. Kamano and C. L. Herald, J. Org. Chem.,
1987, 52, 2848; (b) Y. Kamano, H.-P. Zhang, A. Hino, M.
Yoshida, G. R. Pettit, C. L. Herald and H. Itokawa, J. Nat.
Prod., 1995, 58, 1868; (c) Y. Kamano, H.-P. Zhang, H. Morita,
14 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins