Angewandte
Chemie
motors which make unidirectional rotation feasible in a
controlled manner with the aid of external energy sources.
Received: January 14,2004
Revised: April 28,2004 [Z53753]
Keywords: ligand exchange · molecular recognition ·
.
self-assembly · silver · supramolecular chemistry
[1] V. Balzani, Molecular Devices and Machines: A Journey into the
Nano World,Wiley-VCH,Weinheim, 2003.
[2] L. Raehm,J.-P. Sauvage, Structure and Bonding,Springer,
Berlin, 2001,pp. 99 – 78.
[3] Special issue on molecular machines: Acc. Chem. Res. 2001, 34,
409 – 522.
[4] T. R. Kelly,H. De Silva,R. A. Silva, Nature 1999, 401,150 – 152.
[5] T. C. Bedard,J. S. Moore, J. Am. Chem. Soc. 1995, 117,10662 –
10671.
[6] N. Koumura,R. W. J. Zijistra,R. A. Van Delden,N. Harada,
B. L. Feringa, Nature 1999, 401,152 – 155.
[7] C. A. Schalley,K. Beizal,F. Vögtle, Acc. Chem. Res. 2001, 34,
465 – 476.
[8] M. C. Jimenez-Molero,C. Dietrich-Buchecker,J.-P. Sauvage,
Chem. Commun. 2003,1613 – 1616.
[9] D. A. Leigh,J. K. Y. Wong,F. Dehez,F. Zerbetto, Nature 2003,
424,174 – 179.
[10] M. Ikeda,M. Takeuchi,S. Shinkai,F. Tani,Y. Naruta,S.
Sakamoto,K. Yamaguchi, Chem. Eur. J. 2003, 9,5542 – 5550.
[11] K. Tashiro,K. Konishi,T. Aida, J. Am. Chem. Soc. 2000, 122,
7921 – 7926.
[12] T. Muraoka,K. Kinbara,Y. Kobayashi,T. Aida, J. Am. Chem.
Soc. 2003, 125,5612 – 5613.
[13] S. Hiraoka,K. Harano,T. Tanaka,M. Shiro,M. Shionoya,
Angew. Chem. 2003, 115,5340 – 5343; Angew. Chem. Int. Ed.
2003, 42,5182 – 5185; for a recent report on the molecular
motion of multinuclear metal complexes and a detailed dis-
cussion on the NMR spectroscopic study,see: R. W. Saalfrank,
C. Deutsher,H. Maid,A. M. Ako,S. Sperner,T. Nakajima,W.
Bauer,F. Hampel,B. A. Heß,N. J. R. van Eikema Hommes,R.
Puchta,E. W. Heinemann, Chem. Eur. J. 2004, 10,1899 – 1905.
[14] S. Hiraoka,M. Shiro,M. Shionoya, J. Am. Chem. Soc. 2004, 126,
1214 – 1218.
Figure 3. 1H NMR spectra (500 MHz, CD3OD): a) 1 + 3 equiv of
AgCH3SO3,b) [Ag3(5)2] at 293 K, c) [Ag3(1)(5)] at 293 K, d) [Ag3(1)(5)] at
243 K, e) [Ag3(1)(5)] at 233 K, f) [Ag3(1)(5)] at 223 K, g) [Ag3(1)(5)] at
213 K.
[15] The 1H NMR spectrum of [Ag3(1)(2)] showed only one set of the
thiazolyl protons of 1 (d = 7.90 (d, J = 3.3 Hz,6H),7.64 ppm (d,
J = 3.3 Hz,6H)) above 263 K. Upon cooling the sample down to
213 K the thiazolyl signals were divided into two sets (d = 7.96
(d, J = 3.3 Hz,3H),7.83 (d, J = 3.3 Hz,3H),7.64 (d, J = 3.3 Hz,
3H),7.62 ppm (d, J = 3.3 Hz,3H)),whereas the signals of 2 did
not show any changes. The VT 1H NMR results of the
[Ag3(1)(2)] and the discussion on the energy barrier of the
metal–ligand exchange are described in detail in ref. [14].
[16] See Supporting Information.
[17] In the 1H NMR titration studies using 1 and 5,the signals of
[Ag3(1)(5)] and [Ag3(5)2] ([5] > [1]) or those of [Ag3(1)(5)] and
unidentified Ag+ complexes with 1 ([5] < [1]) were independ-
ently observed. These results also support the relatively slow
intermolecular ligand exchanges in the Ag+ complexes.
[18] The relatively free rotation of the two disks in the ball bearings
contains every rotational motion produced by the combination
of the metal–ligand exchange and the flip motion between the P
and M isomers,such as a 360 8 full rotation and a back and forth
movement.
Figure 4. Schematic representation of a reaction coordinate for 608
rotation, and partial 1H NMR spectra (500 MHz, CD3OD) of [Ag3(1)(3)]
(a)–(e) and [Ag3(1)(4)] (f)–(k). a) 293 K, b) 253 K, c) 233 K, d) 223 K,
e) 213 K, f) 293 K, g) 243 K, h) 233 K, i) 223 K, j) 213 K, k) 203 K.
[19] In the chiral [Ag3(1)(3)] and [Ag3(1)(4)] complexes,the stabil-
ities of the P and M isomers would be different from each other
for each case,and therefore the energy barriers of both the
Angew. Chem. Int. Ed. 2004, 43, 3814 –3818
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3817