2622
O. K. Farha et al. / Tetrahedron Letters 47 (2006) 2619–2622
5. Green, N. S.; Reisler, E.; Houk, K. N. Protein Sci. 2001,
23. Girouard, S.; Houle, M.; Grandbois, A.; Keillor, J. W.;
Michnick, S. W. J. Am. Chem. Soc. 2005, 127, 559–566.
24. Schwartz, A. L.; Lerner, L. M. J. Org. Chem. 1974, 39, 21–
23.
25. Clevenger, R. C.; Turnbull, K. D. Synth. Commun. 2000,
30, 1379–1388.
10, 1293–1304.
6. Fasold, H.; Klappenberger, J.; Meyer, C.; Remold, H.
Angew. Chem., Int. Ed. Engl. 1971, 10, 795–801.
7. (a) Peters, K.; Richards, F. M. Annu. Rev. Biochem. 1977,
46, 523–551; (b) Zecherle, G. N.; Oleinikov, A.; Traut, R.
R. J. Biol. Chem. 1992, 267, 5889–5894.
8. (a) Kwaw, I.; Sun, J.; Kaback, H. R. Biochemistry 2000,
39, 3134–3140; (b) Swaney, J. B. Methods Enzymol. 1986,
128, 613–626.
9. (a) Holmes, K. C.; Popp, D.; Gebhard, W.; Kabsch, W.
Nature 1990, 347, 44–49; (b) Lorenz, M.; Popp, D.;
Holmes, K. C. J. Mol. Biol. 1993, 234, 826–836.
10. Nitao, L. K.; Reisler, E. Biochemistry 1998, 37, 16704–
16710.
26. Cochrane, W. P.; Pauson, P. L.; Stevens, T. S. J. Chem.
Soc. (C) 1968, 6, 630–632.
27. General procedure for the preparation of compounds 3
and 5: A 250 mL round-bottom flask was charged with
PPh3 (1.22 g, 4.58 mmol) to which was added 10 mL of
THF. The resulting clear solution was cooled to À78 °C
and DEAD (0.70 mL, 4.58 mmol) was added slowly. The
yellow solution was stirred for 5 min and then 2 (0.25 g,
1.52 mmol) was added over 2 min and stirred for 10 min.
Succinimide (453 mg, 4.58 mmol) or 4 (1.00 g, 6.02 mmol)
was dissolved in 20 mL THF then added to the reaction
mixture. The resulting solution was allowed to remain at
À78 °C for an additional 10 min. The reaction was stirred
at room temperature for 12 h. The product, 3 or 5,
separated from solution as a white solid, which was
removed by filtration and dried under vacuum to yield
0.50 g (77%) of 3 or 0.65 g (70%) of 5. Compound 3: white
11. Taylor, A. M.; Zhu, Q.; Casey, J. R. Biochem. J. 2001,
359, 661–668.
12. (a) Howard, A. D.; de La Baume, S.; Gioannini, T. L.;
Miller, J. M.; Simon, E. J. J. Biol. Chem. 1985, 260,
10833–10839; (b) Moenner, M.; Chevallier, B.; Badet, J.;
Baritault, D. Proc. Natl. Acad. Sci. U.S.A. 1986, 83, 5024–
5028.
13. (a) Wang, K.; Richards, F. M. J. Biol. Chem. 1975,
250, 6622–6626; (b) D’Souza, S. E.; Ginsberg, M. H.;
Lam, S. C.-T.; Plow, E. F. J. Biol. Chem. 1988, 263, 3943–
3951.
14. Stalteri, M. A.; Mather, S. J. Bioconjugate Chem. 1995, 6,
179–186.
15. Chen, L. L.; Rosa, J. J.; Turner, S.; Pepinsky, R. B. J. Biol.
Chem. 1991, 266, 18237–18243.
16. O’Sullivan, M. J.; Gnemmi, E.; Morris, D.; Chieregatti,
G.; Simmonds, A. D.; Simmons, M.; Bridges, J. W.;
Marks, V. Anal. Biochem. 1991, 100, 100–108.
17. (a) Dean, M.; Rzhetsky, A.; Allikmets, R. Genome Res.
2001, 11, 1156–1166; (b) Loo, T. W.; Clarke, D. M. J.
Biol. Chem. 2001, 276, 31800–31805; (c) Loo, T. W.;
Bartlett, M. C.; Clarke, D. M. J. Biol. Chem. 2003, 278,
39706–39710.
18. Jahng, W. J.; Cheung, E.; Rando, R. R. Biochemistry
2002, 41, 6311–6319.
19. (a) Kossmehl, G.; Hans-Ingo, N.; Pahl, A. Angew.
Makromol. Chem. 1994, 227, 139–156; (b) Zhang, X.; Li,
Z. C.; Li, K. B.; Du, F. S.; Li, F. M. J. Am. Chem. Soc.
2004, 126, 12200–12201.
20. (a) Mitsunobu, O. Synthesis 1981, 1–28; (b) Sammes, P.
G.; Thetford, D. J. Chem. Soc., Perkin Trans. 1 1981, 3,
655–661; (c) Bernarab, A.; Comoy, C.; Guillaumet, G.
Heterocycles 1994, 38, 1641–1650; (d) Brown, F. K.;
Brown, P. J.; Bickett, D. M.; Chambers, C. L.; Davies, H.
G.; Deaton, D. N.; Drewry, D.; Foley, M.; McElroy, A.
B.; Gregson, M.; McGeehan, G. M.; Myers, P. L.;
Norton, D.; Salovich, J. M.; Schoenen, F. J.; Ward, P.
J. Med. Chem. 1994, 37, 674–688; (e) Ardeo, A.;
Garcia, E.; Arrasate, S.; Lete, E.; Sotomayor, N. Tetra-
hedron Lett. 2003, 44, 8445–8448; (f) Dastrup, D. M.;
VanBrunt, M. P.; Weinreb, S. M. J. Org. Chem. 2003, 68,
4112–4115.
1
solid. Mp 165.0–169.5 °C. H NMR (400 MHz, CD2Cl2):
2.69 (12H), 4.57 (6H), 7.18 (3H); 13C NMR (100.6 MHz,
CD2Cl2): 28.2, 41.7, 127.66, 136.8, 176.9; HRMS (EI+) m/z
calcd for C21H21N3O6: 411.1430, found: 411.1430. Com-
pound 5: white solid. Decomposition point 120 °C. 1H
NMR (400 MHz, CD2Cl2): 3.51 (6H), 4.37 (6H), 5.27 (6H),
6.27 (6H), 6.97 (3H); 13C NMR (100.6 MHz, CD2Cl2):
41.7, 46.0, 79.5, 127.7, 134.5, 136.3, 174.5; HRMS (APCI)
m/z calcd for C21H15O6N3Na+ (M+NaÀ3 furan):
428.0853, found: 428.0841.
28. (a) Dembinski, R. Eur. J. Org. Chem. 2004, 13, 2763–2772;
(b) Dandapani, S.; Curran, D. P. Chem. Eur. J. 2004, 13,
3130–3138.
29. A typical procedure is as follows. A suspension of 0.25 g
(0.41 mmol) of 5 in 15 mL of anisole was heated at 145 °C
for 1 h. The reaction was cooled to room temperature and
then chromatographed on silica employing hexanes to
remove the anisole followed by EtOAc to elute 6. The
solvents were removed via rotary evaporation and the
product was dried under vacuum to yield 0.13 g (82%) of 6
as a white solid. Mp 173.0–175.0 °C. 1H NMR (400 MHz,
CD2Cl2): 4.60 (6H), 6.70 (6H), 7.16 (3H); 13C NMR
(100.6 MHz, CD2Cl2): 40.8, 127.3, 134.1, 137.1, 170.1;
HRMS (MALDI) m/z calcd for C21H15O6N3Na+:
428.0853, found: 428.0846.
30. The test reaction of 6 with L-cysteine methyl ester
hydrochloride was performed as follows. Solvents were
deoxygenated by using the following method: The sample
container, provided with a magnetic stirrer, was subject to
a partial vacuum that was broken with argon. This process
was repeated four times. A deoxygenated water solution
(1 mL) of L-cysteine methyl ester hydrochloride (40 mg,
0.23 mmol) was added to a deoxygenated solution of 6
(30 mg, 0.074 mmol) in acetonitrile (1 mL) and was stirred
under argon for 12 h. The solution was concentrated via
rotary evaporation and the resulting residue was lyophi-
21. Walker, M. A. Tetrahedron Lett. 1994, 35, 665–
668.
22. Kwart, H.; Burchuk, I. J. Am. Chem. Soc. 1952, 74, 3094–
3097.
lized to give
a white solid. APCI-MS calcd for
C33H45N3O12S3Cl3H+: 879.3, found: 879.5.