134
Y.M. Li et al. / Journal of Photochemistry and Photobiology A: Chemistry 211 (2010) 129–134
References
[22] G. Mayer, J. Muller, T. Mack, D.F. Freitag, T. Hover, B. Potzsch, A. Heckel, Dif-
ferential regulation of protein subdomain activity with caged bivalent ligands,
ChemBioChem 10 (2009) 654–657.
[23] A. Heckel, G. Mayer, Light regulation of aptamer activity: An anti-thrombin
aptamer with caged thymidine nucleobases, J. Am. Chem. Soc. 127 (2005)
822–823.
[24] X.J. Tang, S. Maegawa, E.S. Weinberg, I.J. Dmochowski, Regulating gene expres-
sion in zebrafish embryos using light-activated, negatively charged peptide
nucleic acids, J. Am. Chem. Soc. 129 (2007) 11000–11001.
[25] X.J. Tang, I.J. Dmochowski, Phototriggering of caged fluorescent oligodeoxynu-
cleotides, Org. Lett. 7 (2005) 279–282.
[1] J.L. Richards, X.J. Tang, A. Turetsky, I.J. Dmochowski, RNA bandages for pho-
toregulating in vitro protein synthesis, Bioorg. Med. Chem. Lett. 18 (2008)
6255–6258.
[2] G. Mayer, A. Heckel, Biologically active molecules with a “light switch”, Angew.
Chem. Int. Ed. 45 (2006) 4900–4921.
[3] Z. Omran, A. Specht, Short-length dimethoxynitrophenyl photo-cleavable
crosslinkers, synthesis and photolysis, J. Photochem. Photobiol. A: Chem. 208
(2009) 125–130.
[4] M. Ren, N. Bi, M. Mao, Q. Song, 2-(1ꢀ-Hydroxyethyl)-anthraquinone as a photo-
labile protecting group for carboxylic acids, J. Photochem. Photobiol. A: Chem.
204 (2009) 13–18.
[26] X.J. Tang, I.J. Dmochowski, Synthesis of light-activated antisense oligodeoxynu-
cleotide, Nat. Protoc. 1 (2006) 3041–3048.
[27] I.J. Dmochowski, X.J. Tang, Taking control of gene expression with light-
activated oligonucleotides, Biotechniques 43 (2007) 161–171.
[28] X. Tang, J. Swaminathan, A.M. Gewirtz, I.J. Dmochowski, Regulating gene
expression in human leukemia cells using light-activated oligodeoxynu-
cleotides, Nucleic Acids Res. 36 (2008) 559–569.
[29] D.D. Young, H. Lusic, M.O. Lively, A. Deiters, Restriction enzyme-free mutagene-
sis via the light regulation of DNA polymerization, Nucleic Acids Res. 37 (2009)
e58.
[30] D.D. Young, R.A. Garner, J.A. Yoder, A. Deiters, Light-activation of gene function
in mammalian cells via ribozymes, Chem. Commun. (2009) 568–570.
[31] D.D. Young, J.M. Govan, M.O. Lively, A. Deiters, Photochemical reg-
ulation of restriction endonuclease activity, ChemBioChem 10 (2009)
1612–1616.
[32] W.F. Edwards, D.D. Young, A. Deiters, Light-activated Cre recombinase as a tool
for the spatial and temporal control of gene function in mammalian cells, ACS
Chem. Biol. 4 (2009) 441–445.
[33] C. Chou, D.D. Young, A. Deiters, A light-activated DNA polymerase, Angew.
Chem. Int. Ed. 48 (2009) 5950–5953.
[34] I.A. Shestopalov, S. Sinha, J.K. Chen, Light-controlled gene silencing in zebrafish
embryos, Nat. Chem. Biol. 3 (2007) 650–651.
[35] X.J. Tang, I.J. Dmochowski, Regulating gene expression with light-activated
oligonucleotides, Mol. BioSyst. 3 (2007) 100–110.
[36] A.D. Ellington, J.W. Szostak, Invitro selection of RNA molecules that bind specific
ligands, Nature 346 (1990) 818–822.
[37] C. Tuerk, L. Gold, Systematic Evolution of ligands by exponential
enrichment—RNA ligands to bacteriophage-T4 DNA-polymerase, Science
249 (1990) 505–510.
[38] Y. Li, J. Shi, Z. Luo, H. Jiang, X. Chen, F. Wang, X. Wu, Q. Guo, Photoregulation of
thrombin HD1 activity using Bhc caging strategy, Bioorg. Med. Chem. Lett. 19
(2009) 5368–5371.
[39] O.D. Fedoryak, T.M. Dore, Brominated hydroxyquinoline as a photolabile pro-
tecting group with sensitivity to multiphoton excitation, Org. Lett. 4 (2002)
3419–3422.
[40] Y. Zhu, C.M. Pavlos, J.P. Toscano, T.M. Dore, 8-Bromo-7-hydroxyquinoline as a
photoremovable protecting group for physiological use: mechanism and scope,
J. Am. Chem. Soc. 128 (2006) 4267–4276.
[41] M.J. Davis, C.H. Kragor, K.G. Reddie, H.C. Wilson, Y. Zhu, T.M. Dore,
Substituent effects on the sensitivity of a quinoline photoremovable pro-
tecting group to one- and two-photon excitation, J. Org. Chem. 174 (2009)
1721–1729.
[42] H. Ando, H. Okamoto, Practical procedures for ectopic induction of gene expres-
sion in zebrafish embryos using Bhc-diazo-caged mRNA, Methods Cell Sci. 25
(2003) 25–31.
[5] J. Yu, W. Tang, H. Wang, Q. Song, Anthraquinon-2-ylethyl-1ꢀ,2ꢀ-diol (Aqe-diol)
as a new photolabile protecting group for aldehydes and ketones, J. Photochem.
Photobiol. A: Chem. 185 (2007) 101–105.
[6] B. Ghosn, F.R. Haselton, K.R. Gee, W.T. Monroe, Control of DNA hybridization
with photocleavable adducts, Photochem. Photobiol. 81 (2005) 953–959.
[7] L. Krock, A. Heckel, Photoinduced transcription by using temporarily mis-
matched caged oligonucleotides, Angew. Chem. Int. Ed. 44 (2005) 471–473.
[8] X. Tang, J.L. Richards, A.E. Peritz, I.J. Dmochowski, Photoregulation of DNA poly-
merase I (Klenow) with caged fluorescent oligodeoxynucleotides, Bioorg. Med.
Chem. Lett. 15 (2005) 5303–5306.
[9] D.D. Young, H. Lusic, M.O. Lively, J.A. Yoder, A. Deiters, Gene silencing in mam-
malian cells with light-activated antisense agents, ChemBioChem 9 (2008)
2937–2940.
[10] A.V. Pinheiro, P. Baptista, J.C. Lima, Light activation of transcription: pho-
tocaging of nucleotides for control over RNA polymerization, Nucleic Acids Res.
36 (2008) e90.
[11] X.J. Tang, I.J. Dmochowski, Controlling RNA digestion by RNase H with a light-
activated DNA hairpin, Angew. Chem. Int. Ed. 45 (2006) 3523–3526.
[12] D. Matsunaga, H. Asanuma, M. Komiyama, Photoregulation of RNA digestion
by RNase H with azobenzene-tethered DNA, J. Am. Chem. Soc. 126 (2004)
11452–11453.
[13] S. Shah, S. Rangarajan, S.H. Friedman, Light activated RNA interference, Angew.
Chem. Int. Ed. 44 (2005) 1328–1332.
[14] Q.N. Nguyen, R.V. Chavli, J.T. Marques, P.G. Conrad, D. Wang, W.H. He, B.E.
Belisle, A.G. Zhang, L.M. Pastor, F.R. Witney, M. Morris, F. Heitz, G. Divita, B.R.G.
Williams, G.K. McMaster, Light controllable siRNAs regulate gene suppression
and phenotypes in cells, Biochim. Biophys. Acta 1758 (2006) 394–403.
[15] R.A. Blidner, K.R. Svoboda, R.P. Hammer, W.T. Monroe, Photoinduced RNA inter-
ference using DMNPE-caged 2ꢀ-deoxy-2ꢀ-fluoro substituted nucleic acids in
vitro and in vivo, Mol. BioSyst. 4 (2008) 431–440.
[16] V. Mikat, A. Heckel, Light-dependent RNA interference with nucleobase-caged
siRNAs, RNA 13 (2007) 2341–2347.
[17] S. Shah, S.H. Friedman, Tolerance of RNA interference toward modifications of
the 5ꢀ antisense phosphate of small interfering RNA, Oligonucleotides 17 (2007)
35–43.
[18] J.P. Casey, R.A. Blidner, W.T. Monroe, Caged siRNAs for spatiotemporal control
of gene silencing, Mol. Pharm. 6 (2009) 669–685.
[19] W.T. Monroe, M.M. McQuain, M.S. Chang, J.S. Alexander, F.R. Haselton, Targeting
expression with light using caged DNA, J. Biol. Chem. 274 (1999) 20895–20900.
[20] H. Ando, T. Furuta, R.Y. Tsien, H. Okamoto, Photo-mediated gene activa-
tion using caged RNA/DNA in zebrafish embryos, Nat. Genet. 28 (2001)
317–325.
[21] H. Ando, M. Kobayashi, T. Tsubokawa, K. Uyemura, T. Furuta, H. Okamoto, Lhx2
mediates the activity of Six3 in zebrafish forebrain growth, Develop. Biol. 287
(2005) 456–468.
[43] G. Hayashi, M. Hagihara, K. Nakatani, RNA HD1s that reversibly bind photore-
sponsive azobenzene-containing peptides, Chem. Eur. J. 15 (2009) 424–432.