Journal of the American Chemical Society
face is hindered by the phenyl groups of the chiral ligand.
Page 4 of 5
(1) For relevant reviews, see: (a) Poulsen, T. B.; Jørgensen, K. A.
1
2
3
4
5
6
7
8
Four distinct transition state models resulting from confor-
mation 14 can be envisaged. TS 3 and TS 4, in which the
imine possesses an s-cis geometry, appear to be unfavorable
on the basis of their eclipsing interactions. Of the more favor-
able staggered conformations TS 1 and TS 2, in which an
imine s-trans geometry is adopted, TS 2 is likely to disfavored
due to the steric clash of the tert-butyl group of the imine with
one of the methyl groups of the chiral ligand. Therefore, reac-
tion through TS 1 is favored. Similar arguments can be in-
voked to explain the stereochemical outcome of the nitroal-
kene additions, through TS 5.
Chem. Rev. 2008, 108, 2903-2915. (b) Bandini, M.; Eichholzer, A.
Angew. Chem., Int. Ed. 2009, 48, 9608-9644. (c) You, S.-L.; Cai, Q.;
Zeng, M. Chem. Soc. Rev. 2009, 38, 2190-2201. (d) Bartoli, G.;
Bencivenni, G.; Dalpozzo, R. Chem. Soc. Rev. 2010, 39, 4449-4465.
(e) Terrasson, V.; de Figueiredo, R. M.; Campagne, J. M. Eur. J. Org.
Chem. 2010, 2635-2655. (f) Kobayashi, S.; Mori, Y.; Fossey, J. S.;
Salter, M. M. Chem. Rev. 2011, 111, 2626-2704.
(2) For a review of 1-azaallylic anions in heterocyclic chemistry,
see: Mangelinckx, S.; Giubellina, N.; De Kimpe, N. Chem. Rev. 2004,
104, 2353-2400.
(3) Xu, J.; Wei, L.; Mathvink, R. J.; Edmondson, S. D.; Eiermann,
G. J.; He, H.; Leone, J. F.; Leiting, B.; Lyons, K. A.; Marsilio, F.;
Patel, R. A.; Patel, S. B.; Petrov, A.; Scapin, G.; Wu, J. K.;
Thornberry, N. A.; Weber, A. E. Bioorg. Med. Chem. Lett. 2006, 16,
5373-5377.
(4) Kolczewski, S.; Marty, H.-P.; Narquizian, R.; Pinard, E.;
Stalder, H. U.S. Pat. Appl. Publ. 2010 US 20100210592 A1.
(5) For racemic additions of alkylazaarenes to aldehydes promoted
by stoichiometric quantities of dialkylboron triflates and trialkylamine
bases, see: (a) Hamana, H.; Sugasawa, T. Chem. Lett. 1983, 333-336.;
(b) Hamana, H.; Sugasawa, T. Chem. Lett. 1984, 1591-1594.
(6) For racemic rhodium-catalyzed hydrogenative coupling of vi-
nylazines with N-sulfonylaldimines, see: Komanduri, V.; Grant, C.
D.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 12592-12593.
(7) For enantioselective copper-catalyzed reductive coupling of
alkenylazaarenes with ketones, see: Saxena, A.; Choi, B.; Lam, H. W.
J. Am. Chem. Soc. 2012, 134, 8428-8431.
(8) For other examples of catalytic enantioselective additions of α-
deprotonated alkylazaarenes to carbon electrophiles, see: (a) Trost, B.
M.; Thaisrivongs, D. A. J. Am. Chem. Soc. 2008, 130, 14092-14093.
(b) Trost, B. M.; Thaisrivongs, D. A. J. Am. Chem. Soc. 2009, 131,
12056-12057. (c) Trost, B. M.; Thaisrivongs, D. A.; Hartwig, J. J.
Am. Chem. Soc. 2011, 133, 12439-12441. (d) Fallan, C.; Lam, H. W.
Chem. Eur. J. 2012, 18, 11214-11218.
(9) (a) Qian, B.; Guo, S.; Shao, J.; Zhu, Q.; Yang, L.; Xia, C.;
Huang, H. J. Am. Chem. Soc. 2010, 132, 3650-3651. (b) Qian, B.;
Guo, S.; Xia, C.; Huang, H. Adv. Synth. Catal. 2010, 352, 3195-3200.
(c) Qian, B.; Xie, P.; Xie, Y.; Huang, H. Org. Lett. 2011, 13, 2580-
2583.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Finally, to demonstrate the synthetic utility of the products,
3j was converted into biaryl 18 by a sequence involving nitro
group reduction, conversion of the resulting amine 16 into
bromide 17, and Suzuki–Miyaura coupling (Scheme 2).
Scheme 2. Manipulation of product 3j.
In conclusion, we have described the first catalytic enanti-
oselective additions of alkylazaarenes to N-Boc imines and
nitroalkenes. Under the action of a chiral Pd(II)–bis(oxazoline)
complex, the reactions proceed with high levels of diastereo-
and enantioselection. By exploiting the acidifying effect of
nitro, cyano, or ester groups on the azaarene, the reactions
occur under mild, experimentally convenient reaction condi-
tions (undried solvent, air atmosphere, and often ambient tem-
perature). In the case of the imine addition products, deprotec-
tion of the Boc group is readily accomplished to reveal the
corresponding amines. This work lays the foundation for the
development of further catalytic enantioselective addition re-
actions of alkylazaarenes for the production of novel chiral
azaarene-containing building blocks. Studies in this area are
ongoing in our laboratories.
(10) Rueping, M.; Tolstoluzhsky, N. Org. Lett. 2011, 13, 1095-
1097.
(11) Komai, H.; Yoshino, T.; Matsunaga, S.; Kanai, M. Synthesis
2012, 2185-2194.
(12) A catalyst-free addition of alkylazaarenes to imines was also
recently described: Yan, Y.; Xu, K.; Fang, Y.; Wang, Z. J. Org.
Chem. 2011, 76, 6849-6855.
(13) Komai, H.; Yoshino, T.; Matsunaga, S.; Kanai, M. Org. Lett.
2011, 13, 1706-1709.
(14) Qian, B.; Shi, D.; Yang, L.; Huang, H. Adv. Synth. Catal.
2012, 2146-2150.
ASSOCIATED CONTENT
Supporting Information
(15) In one case, a good diastereomeric ratio of 9:1 was obtained
by the Rueping group. See ref. 10.
(16) For amine-catalyzed racemic addition of 3,5-diethyl-4-
nitroisoxazole to carbonyl compounds, see: Adamo, M. F. A.; Suresh,
S. Tetrahedron 2009, 65, 990-997.
Experimental procedures, full spectroscopic data for all new com-
pounds, and crystallographic data in cif format. This material is
AUTHOR INFORMATION
(17) Desimoni, G.; Faita, G.; Mella, M. Tetrahedron 1996, 52,
13649-13654.
Corresponding Author
(18) See Supporting Information for the structures of 1a–1j.
(19) The relative and absolute configurations of the products ob-
tained herein were assigned by analogy with those of 3j, 9, and 12b
which were determined by X-ray crystallography using a copper radi-
ation source. See Supporting Information for details.
(20) For reviews of nitroalkenes as conjugate acceptors, see: (a)
Barrett, A. G. M.; Graboski, G. G. Chem. Rev. 1986, 86, 751-762. (b)
Barrett, A. G. M. Chem. Soc. Rev. 1991, 20, 95-127. (c) Berner, O.
M.; Tedeschi, L.; Enders, D. Eur. J. Org. Chem. 2002, 1877-1894.
(21) Repeating the reaction of Table 1, entry 1 using Pd(TFA)2 in
place of Pd(OAc)2, in the presence of Et3N (10 mol %) gave 3a in
32% conversion, 95:5 dr, and 88/44% ee (major/minor).
ACKNOWLEDGMENT
We thank the ERC (Starting Grant No. 258580) and the EPSRC
(Leadership Fellowship to H. W. L.) for support of this work. We
are grateful to Dr. Gary S. Nichol (University of Edinburgh) for
X-ray crystallography, and the EPSRC National Mass Spectrome-
try Service Centre for high-resolution mass spectra.
REFERENCES
ACS Paragon Plus Environment