HAN ET AL.
7
7. a)Aceña JL, Sorochinsky AE, Moriwaki H, Sato T, Soloshonok
VA. Synthesis of fluorine‐containing α‐amino acids in
enantiomerically pure form via homologation of Ni (II) com-
plexes of glycine and alanine Schiff bases. J Fluor Chem.
2013;155:21‐38. b)Mikami K, Fustero S, Sánchez‐Roselló M,
Aceña J, Soloshonok VA. Synthesis of fluorinated β‐amino acids.
Synthesis. 2011;2011(19):3045‐3079.
16. Soloshonok VA, Ueki H, Tiwari R, Cai C, Hruby VJ. Virtually
complete control of simple and face diastereoselectivity in the
Michael addition reactions between achiral equivalents of a
nucleophilic glycine and (S)‐ or (R)‐3‐(e‐enoyl)‐4‐phenyl‐1,3‐
oxazolidin‐2‐ones: practical method for preparation of β‐
substituted pyroglutamic acids and prolines. J Org Chem.
2004;69(15):4984‐4990.
17. a)Soloshonok VA, Kukhar VP, Galushko SV, et al. General
method for the synthesis of enantiomerically pure β‐hydroxy‐α‐
amino acids, containing fluorine atoms in the side chains. Case
of stereochemical distinction between methyl and trifluoromethyl
groups. X‐ray crystal and molecular structure of the nickel (II)
complex of (2S,3S)‐2‐(trifluoromethyl)threonine. J Chem Soc
Perkin Trans. 1993;1:3143‐3155. b)Kawamura A, Moriwaki H,
Röschenthaler G‐V, Kawada K, Aceña JL, Soloshonok VA. Syn-
thesis of (2S,3S)‐β‐(trifluoromethyl)‐α,β‐diamino acid by
Mannich addition of glycine Schiff base Ni (II) complexes to n‐
tert‐butylsulfinyl‐3,3,3‐trifluoroacetaldimine. J Fluorine Chem.
2015;171:67‐72.
8. Grygorenko OO, Biitseva AV, Zhersh S. Amino sulfonic acids,
peptidosulfonamides and other related compounds. Tetrahe-
dron. 2018;74(13):1355‐1421.
9. a)Röschenthaler GV, Kukhar VP, Kulik IB, et al. Asymmetric
synthesis of phosphonotrifluoroalanine and its derivatives using
n‐tert‐butanesulfinyl imine derived from fluoral. Tetrahedron
Lett. 2012;53(5):539‐542. b)Turcheniuk KV, Poliashko KO,
Kukhar VP, Rozhenko AB, Soloshonok VA, Sorochinsky AE.
Efficient asymmetric synthesis of trifluoromethylated β‐
aminophosphonates and their incorporation into dipeptides.
Chem Commun. 2012;48(94):11519‐11521.
10. a)Soloshonok VA, Ohkura H, Yasumoto M. Operationally con-
venient asymmetric synthesis of (S)‐ and (R)‐3‐amino‐4,4,4‐
trifluorobutanoic acid. J Fluor Chem. 2006;127(7):930‐935. b)
Shibata N, Nishimine T, Shibata N, et al. Organic base‐
catalyzed stereodivergent synthesis of (R)‐ and (S)‐3‐amino‐
18. a)Soloshonok VA, Ueki H, Ellis TK, Yamada T, Ohfune Y. Appli-
cation of modular nucleophilic glycine equivalents for truly
practical asymmetric synthesis of β‐substituted pyroglutamic
acids. Tetrahedron Lett. 2005;46(7):1107‐1110. b)Ellis TK, Ueki
H, Yamada T, Ohfune Y, Soloshonok VA. The design, synthesis
and evaluation of a new generation of modular nucleophilic gly-
cine equivalents for the efficient synthesis of sterically
constrained α‐amino acids. J Org Chem. 2006;71(22):8572‐8578.
4,4,4‐trifluorobutanoic
acids.
Chem
Commun.
2012;48(34):4124‐4126. c)Yamada T, Okada T, Sakaguchi K,
Ohfune Y, Ueki H, Soloshonok VA. Efficient asymmetric syn-
thesis of novel 4‐substituted and configurationally stable
analogues of thalidomide. Org Lett. 2006;8(24):5625‐5628.
19. Nian Y, Wang J, Zhou S, et al. Recyclable ligands for the non‐
enzymatic dynamic kinetic resolution of challenging α‐amino
acids. Angew Chem Int Ed. 2015;54(44):12918‐12922.
11. a)Sorochinsky AE, Aceña JL, Soloshonok VA. Self‐dispropor-
tionation of enantiomers of chiral, non‐racemic fluoroorganic
compounds: role of fluorine as enabling element. Synthesis.
2013;45:141‐152. b)Ueki H, Yasumoto M, Soloshonok VA. Ratio-
nal application of self‐disproportionation of enantiomers via
sublimation—a novel methodological dimension for enantio-
meric purifications. Tetrahedron: Asymmetry. 2010;21(11‐
12):1396‐1400.
20. Takeda R, Kawamura A, Kawashima A, et al. Chemical
dynamic kinetic resolution and (S)/(R)‐interconversion of
unprotected α‐amino acids. Angew Chem Int Ed.
2014;53(45):12214‐12217.
21. Jörres M, Chen X, Aceña JL, et al. Asymmetric synthesis of α‐
amino acids under operationally convenient conditions. Adv
Synth Catal. 2014;356(10):2203‐2208.
12. Wang Y, Song X, Wang J, Moriwaki H, Soloshonok VA, Liu H.
Recent approaches for asymmetric synthesis of α‐amino acids
via homologation of Ni (II) complexes. Amino Acids.
2017;49(9):1487‐1520.
22. a)Bergagnini M, Fukushi K, Han J, et al. NH‐type of chiral Ni
(II) complexes of glycine Schiff base: design, structural evalua-
tion, reactivity and synthetic applications. Org Biomol Chem.
2014;12(8):1278‐1291. b)Moriwaki H, Resch D, Li H, et al. Inex-
pensive chemical method for preparation of enantiomerically
pure phenylalanine. Amino Acids. 2014;46(4):945‐952.
13. Soloshonok VA, Ellis TK, Ueki H, Ono T. Resolution/
deracemization of chiral‐amino acids using resolving reagents
with flexible stereogenic centers.
J
Am Chem Soc.
2009;131(21):7208‐7209.
23. a)Takeda R, Kawamura A, Kawashima A, et al. Second‐order
asymmetric transformation and its application for the practical
14. Zhou S, Wang J, Chen X, Aceña JL, Soloshonok VA, Liu H.
Chemical kinetic resolution of unprotected b‐substituted‐b‐
amino acids using recyclable chiral ligands. Angew Chem Int
Ed. 2014;53(30):7883‐7886.
synthesis
of
α‐amino
acids.
Org
Biomol
Chem.
2018;16(27):4968‐4972. b)Takeda R, Kawashima A, Yamamoto
J, et al. Tandem alkylation—second‐order asymmetric transfor-
mation protocol for preparation of phenylalanine‐type tailor‐
made α‐amino acids. ACS Omega. 2018;3(8):9729‐9737.
15. a)Tang X, Soloshonok VA, Hruby VJ. Convenient asymmetric
synthesis of enantiomerically pure 2′,6′‐dimethyltyrosine
(DMT) via alkylation of chiral nucleophilic glycine equivalent.
Tetrahedron: Asymmetry. 2000;11(14):2917‐2925. b)Taylor SM,
Yamada T, Ueki H, Soloshonok VA. Asymmetric synthesis of
24. Vanthuyne NC, Roussel C. Chiroptical detectors for the study of
unusual phenomena in chiral chromatography. Different
Enantio I. 2013;340:107‐151.
enantiomerically
pure
4‐aminoglutamic
acids
via
25. Moore JL, Taylor SM, Soloshonok VA. An efficient and opera-
tionally convenient general synthesis of tertiary amines by
direct alkylation of secondary amines with alkyl halides in the
presence of Hünig's base. Arkivoc. 2005;6:287‐292.
methylenedimerization of chiral glycine equivalents with
dichloromethane under operationally convenient conditions.
Tetrahedron Lett. 2004;45(50):9159‐9162.