62
the results of the conjugation between porphyrin ring and azoben-
zene moiety in the oxidation was used. Compared with the ꢁEox of
H2PAn (Table 3) and the ꢁEox of ZnPAn (Table 6), it was observed
that the ꢁEox of H2PAn decreased obviously with the increas-
ing number of azobenzene because of the stronger -conjugation
between porphyrin ring and meso-azobenzenes (Fig. 7). When
the onset reduction potentials were applied, Soret band and
azobenzene peak (352 nm) decreased concurrently (Fig. 9). These
results revealed that the electron delocalization between por-
reduction part. But the ꢁEox of ZnPAn has slightly decreased as
azobenzene number increased. It indicated that only a glimmer
of -electron delocalized between meso-azobenzene and porpyrin
ring. The azobenzene peak (352 nm) was not significantly changed
at Eappl. = −1.20 V (Fig. 14). With the results, we could further con-
firm that the first reduction wave of ZnPA1 at Epc = −1.34 V was due
to the porphyrin ring reduction. When Eappl. was at onset reduc-
tion potential, the spectral change patterns of ZnPA2 and ZnPA4
were similar, the soret and Q band decreasing and azobenzene peak
having no change. According to the spectroelectrochemical results,
it is thus inferred that the first reduction sites of ZnPAn were at the
prophyrin ring.
References
[1] F. Li, S.I. Yang, Y. Ciringh, J. Seth, C.H. Martin III, D.L. Singh, D. Kim, R.R. Birge,
D.F. Bocian, D. Holten, J.S. Lindsey, J. Am. Chem. Soc. 120 (1998) 10001.
[2] D. Holten, D.F. Bocian, J.S. Lindsey, Acc. Chem. Res. 35 (2002) 57.
[3] B.M.J.M. Suijkerbuijk, R.J.M. Klein Gebbink, Angew. Chem. Int. Ed. 47 (2008)
7396.
[4] H. Imahori, T. Umeyama, S. Ito, Acc. Chem. Res. 42 (2009) 1809.
[5] S. Fukuzumi, K. Ohkubo, H. Imahori, J. Shao, Z. Ou, G. Zheng, Y.R. Chen, K. Pandey,
M. Fujitsuka, O. Ito, K.M. Kadish, J. Am. Chem. Soc. 123 (2001) 10676.
[6] A.N. Macpherson, P.A. Liddell, S. Lin, L. Noss, G.R. Seely, J.M. DeGraziano, A.L.
Moore, T.A. Moore, D. Gust, J. Am. Chem. Soc. 117 (1995) 7202.
[7] Y. Kashiwagi, H. Imahori, Y. Araki, O. Ito, K. Yamada, Y. Sakata, S. Fukuzumi, J.
Phys. Chem. A 107 (2003) 5515.
[8] J.K. Park, J. Chen, H.R. Lee, S.W. Park, H. Shinokubo, A. Osuka, D. Kim, J. Phys.
Chem. C 113 (2009) 21956.
[9] M. Autret, M. Le Plouzennec, C. Moinet, G. Simonneaux, J. Chem. Soc. Chem.
Commun. (1994) 1169.
[10] S. Tsuchiya, J. Am. Chem. Soc. 121 (1999) 48.
[11] T. Yamamura, A. Momotakeb, T. Arai, Tetrahedron Lett. 45 (2004) 9219.
[12] A. Aemissegger, V. Kräutler, W.F. van Gunsteren, D. Hilvert, J. Am. Chem. Soc.
127 (2005) 2929.
[13] I. Tomatsu, A. Hashidzume, A. Harada, J. Am. Chem. Soc. 128 (2006) 2226.
[14] C.A. Hunter, L.D. Sarson, Tetrahedron Lett. 37 (1996) 699.
[15] M.V. Peters, R. Goddard, S. Hecht, J. Org. Chem. 71 (2006) 7846.
[16] J.S. Lindsey, W. Wagner, J. Org. Chem. 54 (1989) 828.
[17] C.H. Lee, J.S. Lindsey, Tetrahedron 50 (1994) 11427.
[18] A.D. Adler, F.R. Longo, F. Kamas, J. Kim, J. Inorg. Nucl. Chem. 32 (1970)
2443.
[19] J. March, Advanced Organic Chemistry, 4th ed., Wiley, New York, 1992,
p. 1280.
[20] Y.C. Lin, K.L. Cheng, W.S. Tzeng, C.L. Su, L.J. Lee, L.Y. Wang, C.M. Yang, L.L. Lai,
Liq. Cryst. 33 (2006) 289.
5. Conclusions
This work displays several idiosyncratic features of absorption
spectra and electrochemistry for the azobenzene-containing por-
phyrins. (1) The Q-band intensity ratios (ε␣/εˇ) for ZnPAn slightly
increase with the increase number of meso-azobenzene. Upon addi-
tion of imidazole, the Q band ratio for (HIm)ZnPA4 is even larger
than 1. (2) The reduction of free base H2PAn to various charge
states would create a specific interaction with imidazole. (3) The
azobenzene moieties were reduced at a potential close to that of
the porphyrin ring, and it was observed that the current for the first
overlapping wave dramatically increase with the increase number
of meso-azobenzene. (4) The potential of the first oxidation wave of
H2PAn is slightly more positive but the second oxidation exhibits a
reverse shift as the number of meso-azobenzene increases. (5) The
first reduction wave of ZnPAn is at the zinc porphyrin ring reduction
and spectroelectrochemistry also reveal this results. Based on MO
analysis, points (1) and (4) have been rationalized. Further investi-
gations by replacing the azo group with imine or alkene links and
by variation of positions of the linkers will be undertaken in future
to see if those unusual features can also be observed.
[21] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheese-
man, J.A. Montgomery, T. Vreven Jr., K.N. Kudin, J.C. Burant, J.M. Millam, S.S.
Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P.
Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Strat-
mann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K.
Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich,
A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari,
J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Ste-
fanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith,
M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. John-
son, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, GAUSSIAN 03 Revision E. 01;,
Gaussian Inc., Wallingford, CT, 2004.
[22] R. Ma, P. Guo, H. Cui, X. Zhang, M.K. Nazeeruddin, M. Grätzel, J. Phys. Chem. A
113 (2009) 10119.
[23] Y. Nakamura, N. Aratani, H. Shinokubo, A. Takagi, T. Kawai, T. Matsumoto, Z.S.
Yoon, D.Y. Kim, T.K. Ahn, D. Kim, A. Muranaka, N. Kobayashi, A. Osuka, J. Am.
Chem. Soc. 128 (2006) 4119.
[24] R. Dennington II, T. Keith, J. Millam, K. Eppinnett, W.L. Hovell, R. Gilliland, Gauss
View, Version 4.1.2, Semichem, Inc., Shawnee Mission, KS, 2007.
[25] M. Nappa, J.S. Valentine, J. Am. Chem. Soc. 100 (1978) 5075.
[26] J.L. Retsek, C.J. Medforth, D.J. Nurco, S. Gentemann, V.S. Chirvony, K.M. Smith,
D. Holten, J. Phys. Chem. B 105 (2001) (2001) 6396.
[27] P.J. Spellane, M. Gouterman, A. Antipas, S. Kim, Y.C. Liu, Inorg. Chem. 19 (1980)
386.
[28] J. Bu, N.D. Lilienthal, J.E. Woods, C.E. Nohrden, K.T. Hoang, D. Truong, D.K. Smith,
J. Am. Chem. Soc. 127 (2005) 6423.
Acknowledgment
[29] F. Barrire, W.E. Geiger, J. Am. Chem. Soc. 128 (2006) 3980.
[30] C.L. Lin, M.Y. Fang, S.H. Cheng, J. Electroanal. Chem. 531 (2002) 155.
[31] J.C. Chang, C.J. Ma, G.H. Lee, S.M. Peng, C.Y. Yeh, Dalton Trans. (2005) 1504.
[32] C.W. Huang, K.Y. Chiu, S.H. Cheng, Dalton Trans. (2005) 2417.
[33] K.Y. Chiu, Y.O. Su, Chem. Commun. (2009) 2884.
This research is supported by the National Science Council of
the Republic of China (NSC 97-2113-M-260-005-MY3, NSC 99-
2811-M-260-006) and the National Center for High-performance
Computing for computer time and facilities.