1586
M. Tarleton, A. McCluskey / Tetrahedron Letters 52 (2011) 1583–1586
16. Sonawane, Y. A.; Phadtare, S. B.; Borse, B. N.; Jagtap, A. R.; Shankarling, G. S. Org.
Lett. 2010, 12, 1456–1459.
17. Ryabukhin, S. V.; Plaskon, A. S.; Volochnyuk, D. M.; Pipko, S. E.; Shivanyuk, A.
N.; Tolmachev, A. A. J. Comb. Chem. 2007, 9, 1073–1078.
use of flow chemistry approaches allowed rapid surveying of the
reaction conditions and the ability to up-scale the quantity of the
product produced by simply increasing the reaction time.
18. McCluskey, A.; Robinson, P. J.; Hill, T.; Scott, J. L.; Edwards, J. K. Tetrahedron Lett.
2002, 43, 3117–3120.
19. Correa, W. H.; Edwards, J. K.; McCluskey, A.; McKinnon, I.; Scott, J. L. Green
Chem. 2003, 5, 30–33.
Acknowledgements
20. Example synthesis of pyrrole-2-ylacrylonitriles: (Z)-2-Phenyl-3-(1H-pyrrol-2-
yl)acrylonitrile (3a):10 1H-Pyrrole-2-carbaldehyde (1) (165 mg, 1.74 mmol) was
added to vigorously stirred H2O (10 mL) and heated to 50 °C upon which it
dissolved. Phenylacetonitrile (2a) (193 mg, 1.65 mmol) was then slowly added
forming a suspension. Heating was continued at 50 °C and once a clear solution
was evident, typically 5–10 min, 40% PhCH2NMe3(OH) (7 mL) was added
dropwise. The reaction vessel was sealed and the mixture stirred at 50 °C for
5 h, the solution filtered hot, washed with warm H2O and dried under suction
and recrystallised from EtOH to afford 3a as a brown solid; 73%; mp 94–96 °C.
1H NMR (CDCl3, 300 MHz): d 7.61–7.57 (m, 2H), 7.45–7.40 (m, 2H), 7.42 (s, 1H),
7.35–7.30 (m, 1H), 7.08–7.06 (m, 1H), 6.73 (dd, J = 1.4, 3.7 Hz, 1H), 6.37 (dd,
J = 1.4, 3.7, 1H); 13C NMR (CDCl3, 75 MHz): d 133.4, 130.7, 128.5, 127.6, 127.2,
124.4, 123.5, 120.1, 118.5, 110.3, 100.8.
21. Clapham, B.; Wilson, N. S.; Michmerhuizen, M. J.; Blanchard, D. P.; Dingle, D.
M.; Nemcek, T. A.; Pan, J. Y.; Sauer, D. R. J. Comb. Chem. 2008, 10, 88–93.
23. Example reduction of the olefin moiety: 2-Phenyl-3-(1H-pyrrol-2-
yl)propanenitrile (4a):11 (Z)-2-Phenyl-3-(1H-pyrrol-2-yl)acrylonitrile (3a)
(990 mg, 5.1 mmol) was dissolved in sufficient freshly distilled dry acetone
(100 mL) to form a 0.05 M solution. This solution was hydrogenated using the
ThalesNano H-cube™ using a 10% Pd/C catalyst at 1 mL/min flow rate, 50 °C
and 50 bar H2 pressure. The acetone was removed in vacuo and the crude oil
was subjected to flash silica chromatography (1:1 CHCl3/hexanes) to afford 4a
as a brown oil; 98%. 1H NMR (CDCl3, 300 MHz): d 8.03 (br s, 1H), 7.42–7.35 (m,
3H), 7.29–7.26 (m, 2H), 6.69–6.67 (m, 1H), 6.15–6.13 (m, 1H), 6.03–6.02 (m,
1H), 4.01 (t, J = 7.4 Hz, 1H), 3.28–3.14 (m, 2H). 13C NMR (CDCl3,75 MHz): d
134.5, 128.6, 127.8, 126.8, 125.7, 120.4, 117.3, 108.1, 107.4, 38.4, 34.0.
24. Example reduction of the olefin and nitrile moieties: 2-(4-Fluorophenyl)-3-
(1H-pyrrol-2-yl)propan-1-amine (5c): a solution of (Z)-2-(4-fluorophenyl)-3-
(1H-pyrrol-2-yl)acrylonitrile (3c) (0.05 M, 990 mg, 4.6 mmol) in 1 M NH3 in
MeOH (100 mL) was hydrogenated using the ThalesNano H-cube™ using a Ra/
Ni catalyst at 0.5 mL/min flow rate, 70 °C and 70 bar H2 pressure. The solvent
was removed in vacuo and the crude oil subjected to flash silica
chromatography (0.05:0.95 MeOH/CH2Cl2) to afford 5c as a clear oil; 100%.
1H NMR (CDCl3, 300 MHz): d 8.47 (br s, 1H), 7.15–7.10 (m, 2H), 7.04–6.98 (m,
2H), 6.59–6.58 (m, 1H), 6.08–6.06 (m, 1H), 5.84–5.83 (m, 1H), 2.97–2.85 (m,
5H), 2.41 (br s, 2H). 13C NMR (CDCl3, 75 MHz): d 162.8, 159.5, 138.0, 129.2,
128.7, 116.0, 115.1, 114.9, 107.5, 105.9, 47.9, 46.2, 32.0; HRMS calculated for
(M+H+): C13H16FN2, 219.1298; found 219.1307.
The authors acknowledge the financial support of the Australian
Research Council, the Australian Cancer Research and Ramaciotti
Foundations, and John Morris Scientific, Australia. M.T. acknowl-
edges the UNI-PRS postgraduate funding from the University of
Newcastle. Protein phosphatase inhibition data for 7 and 8 were
determined by Drs Jennette Sakoff and Jayne Gilbert, Calvary Mater
Hospital, Newcastle Australia.
References and notes
1. McCluskey, A.; Sim, A. T. R.; Sakoff, J. A. J. Med. Chem. 2002, 45, 1151–1175.
2. Hill, T. A.; McGeachie, A. B.; Gordon, C. P.; Odell, L. R.; Chau, N.; Robinson, P. J.;
McCluskey, A. J. Med. Chem. 2010, 53, 4094–4102.
3. Hill, T. A.; Gordon, C. P.; McGeachie, A. B.; Venn-Brown, B.; Odell, L. R.; Chau, N.;
Quan, A.; Mariana, A.; Sakoff, J. A.; Chircop, M.; Robinson, P. J.; McCluskey, A. J.
Med. Chem. 2009, 52, 3762–3773.
4. Colombo, M.; Peretto, I. Drug Discovery Today 2008, 13, 677–684.
5. Baxendale, I. R.; Ley, S. V.; Mansfield, A. C.; Smith, C. D. Angew. Chem., Int. Ed.
2009, 48, 4017–4021.
6. Palmieri, P.; Ley, S. V.; Hammond, K.; Polyzos, A.; Baxendale, I. R. Tetrahedron
Lett. 2009, 50, 3287–3289.
7. Ley, S. V.; Baxendale, I. R. Chimia 2008, 62, 162–168.
8. Smith, C. J.; Iglesias-Sigüenza, F. J.; Baxendale, I. R.; Ley, S. V. Org. Biomol. Chem.
2007, 5, 2758–2761.
9. Stazi, F.; Cancogni, D.; Turco, L.; Westerduin, P.; Bacchi, S. Tetrahedron Lett.
2010, 51, 5385–5387.
10. Ali, A.; Bliese, M.; Rasmussen, J.-A. M.; Sargent, R. M.; Saubern, S.; Sawutz, D. G.;
Wilkie, J. S.; Winkler, D. A.; Winzenberg, K. N.; Woodgate, R. C. J. Bioorg. Med.
Chem. Lett. 2007, 17, 993–997.
11. Tarleton, M.; Gilbert, J.; Robertson, M. J.; McCluskey, A.; Sakoff, J. A. Med. Chem.
Commun. 2011, 2, 31–37.
12. Jautze, S.; Peters, R. Synthesis 2010, 365–388.
13. Wang, K.; Kim, D.; Dömling, A. J. Comb. Chem. 2010, 12, 111–118.
14. Radi, M.; Botta, L.; Casaluce, G.; Bernardini, M.; Botta, M. J. Comb. Chem. 2010,
12, 200–205.
15. Hayashi, Y.; Toyoshima, M.; Gotoh, H.; Ishikawa, H. Org. Lett. 2009, 11, 45–48.