P. S. Johnson et al. / Tetrahedron Letters 52 (2011) 3226–3227
3227
CHO
CN
group ortho to the oxazoline could then be selectively displaced
using excess of an organometallic reagent10 to give 13 or 15. Dehy-
dration of the oxazoline to the nitrile was achieved using POCl3
followed by anisole deprotection using BCl3/Bu4NI (BBr3 was much
less effective) to give the phenols of interest. These syntheses are
shown in Scheme 3.
CN
F
F
Cl
OH
OH
O
F
H2N-OSO3H
CO2Na
11
MeCN/H2O, 80 o
C
F
Cs2CO3,
DMF/H2O
130 o
OBn
OBn
OBn
C
7
8 (64%)
9 (68%)
In summary, we have reported the preparation of a small set of
novel 4-cyanophenols.12 It is noteworthy that it was necessary to
use diverse synthetic strategies to access these compounds. For
example, it proved impossible to prepare 14 using the route de-
scribed in Scheme 1 as attempts at palladium-catalysed cyanation
were uniformly unsuccessful, presumably due to the steric hin-
drance of the tbutyl group.13 Thus our work provides a good exam-
ple of both the flexibility and limitations of contemporary organic
synthesis. Each of the compounds reported herein bears a substitu-
ent designed to confer beneficial physicochemical properties to
drug-like molecules that incorporate the phenols we have de-
scribed. The preparation of such compounds in a drug discovery
programme will be reported in due course.
Pd/C, EtOH
reflux
CN
OH
O
F
F
10 (95%)
Scheme 2. Preparation of difluoromethoxy-substituted cyanophenol.
References and notes
CN
1. Jones, L. H.; Summerhill, N. W.; Swain, N. A.; Mills, J. E. J. Med. Chem. Commun.
2010, 309–318. and references therein..
N
O
i POCl3, py, EtOAc,
reflux
2. See, for example: (a) Tucker, T. J.; Saggar, S.; Sisko, J. T.; Tynebor, R. M.;
Williams, T. M.; Felock, P. J.; Flynn, J. A.; Lai, M.-T.; Liang, Y.; McGaughey, G.;
Liu, M.; Miller, M.; Moyer, G.; Munshi, V.; Perlow-Poehnelt, R.; Prasad, S.;
Sanchez, R.; Torrent, M.; Vacca, J. P.; Wan, B.-L.; Yan, Y. Bioorg. Med. Chem. Lett.
2008, 18, 2959–2966; (b) Middleton, D. S.; Andrews, M.; Glossop, P.; Gymer, G.;
Hepworth, D.; Jessiman, A.; Johnson, P. S.; MacKenny, M.; Stobie, A.; Tang, K.;
Morgan, P.; Jones, B. Bioorg. Med. Chem. Lett. 2008, 18, 5303–5306; (c) Whitlock,
G. A.; Fish, P. V.; Fray, M. J.; Stobie, A.; Wakenhut, F. Bioorg. Med. Chem. Lett.
2008, 18, 2896–2899.
ii BCl3, Bu4NI,
CH2Cl2, 0 oC to rt
OH
OMe
13 (60%)
14 (73% overall)
tBuLi,
THF,
-70 oC
3. Some selected examples: 3-methyl: (a) Smith, C. J.; Ali, A.; Chen, L.; Hammond,
M. L.; Anderson, M. S.; Chen, Y.; Eveland, S. S.; Guo, Q.; Hyland, S. A.; Milot, D.
P.; Sparrow, C. P.; Wright, S. D.; Sinclair, P. J. Bioorg. Med. Chem. Lett. 2010, 20,
346–349; (b) 3-ethyl: Xiang, J.; Lin, X.; Ren, F.; Deng, G. PCT Int. Appl. WO
2010148650; Chem. Abstr. 2010, 154, 88221.; 3-methoxy: (c) Mitchell, L.;
Wang, Z.; Hu, L.-Y.; Kostlan, C.; Carroll, M.; Dettling, D.; Du, D.; Pocalyko, D.;
Wade, K. Bioorg. Med. Chem. Lett. 2009, 19, 1310–1313; 3-chloro: (d) Mowbray,
C. E.; Corbau, R.; Hawes, M.; Jones, L. H.; Mills, J. E.; Perros, M.; Selby, M. D.;
Stupple, P. A.; Webster, R.; Wood, A. Bioorg. Med. Chem. Lett. 2009, 19, 5603–
5606; 3-trifluoromethyl: (e) Mitchell, L. H.; Johnson, T. R.; Lu, G. W.; Du, D.;
Datta, K.; Grzemski, F.; Shanmugasundaram, V.; Spence, J.; Wade, K.; Wang, Z.;
Sun, K.; Lin, K.; Hu, L.-Y.; Sexton, K.; Raheja, N.; Kostlan, C.; Pocalyko, D. J. Med.
Chem. 2010, 53, 4422–4427; (f) 3-cyano: Berke, H.; Duplantier, A. J.; Efremov, I.;
Mchardy, S. F.; Rogers, B. N.; Qian, W.; Zhang, L.; Zhang, Qi. PCT Int. Appl. WO
2007135527; Chem. Abstr. 2007, 148, 33731.
CO2H
OMe
i (COCl)2, cat DMF
CH2Cl2, rt
N
O
OMe
ii
OH
H2N
OMe
Et3N, CH2Cl2, rt
OMe
iii SOCl2, CH2Cl2, rt
11
12 (76%)
Mg,
Br
4. This material is commercially available from Alfa Aesar.
THF,
0
oC to rt
5. Streith, J.; Fizet, C.; Fritz, H. Helv. Chim. Acta 1976, 59, 2786–2792.
6. See, for example: Jian, N.; Ragauskas, A. J. Tetrahedron. Lett. 2010, 51, 4479–
4481.
7. For a recent exception, see: Madhusudana Reddy, M. B.; Pasha, M. A. Chin.
Chem. Lett. 2010, 21, 1025–1028.
8. For a review of the chemistry of this substituent, see: Reumann, M.; Myers, A. I.
Tetrahedron 1985, 41, 837–860.
i POCl3, py, EtOAc,
reflux
CN
N
O
9. Since this work was carried out an improved protocol for this transformation
has been reported, see: Kangani, C. O.; Kelley, D. E. Tetrahedron. Lett. 2005, 46,
8917–8920.
ii BCl3, Bu4NI,
CH2Cl2, 0 oC to rt
OH
10. Grant, T. G.; Myers, A. I. J. Am. Chem. Soc. 1992, 114, 1010–1015.
11. Dordor, I. M.; Mellor, J. M.; Kennewel, P. D. Tetrahedron. Lett. 1983, 24, 1437.
OMe
15 (71%)
12. Brief characterisation data for each compound are as follows. For compound 6: 1
H
16 (67% overall)
NMR (400 MHz, CDCl3) 6.72–6.76 (2H, m) 7.46 (1H, d, J = 8.6 Hz); MS (ESI): m/z
202 [MÀ1]À.
Scheme 3. Preparation of tbutyl- and cpropyl-substituted phenols.
For compound 10: 1H NMR (400 MHz, CDCl3) 6.72–6.77 (2H, m), 7.36 (1H, t,
J = 72.6 Hz), 7.68 (1H, d, J = 8.8 Hz), 11.05 (1H, br s); MS (ESI): m/z 184 [MÀ1]À.
For compound 14: 1H NMR (400 MHz, CDCl3) 1.48 (9H, s), 5.92 (1H, br s), 6.72
(1H, dd, J = 8.6, 2.3 Hz), 6.93 (1H, d, J = 2.3 Hz), 7.55 (1H, d, J = 8.6 Hz); MS (ESI):
m/z 174 [MÀ1]À.
fer hydrogenation yielded the cyanophenol of interest. This series
of reactions is shown in Scheme 2.
For compound 16: 1H NMR (400 MHz, CDCl3) 0.78 (2H, m), 1.14 (2H, m), 2.24
(1H, m), 6.39 (1H, m), 6.69 (1H, m), 7.48 (1H, d, J = 8.6 Hz), MS (ESI): m/z 158
[MÀ1]À.
Our third strategy involved revealing the nitrile function from
an oxazoline8 which was in turn used to direct the attachment of
alkyl substituents using an SNAr reaction. Readily available 2,4-
dimethoxybenzoic acid (11) was transformed into the oxazoline
12 via a well-known three-step, two-pot process.9 The methoxy
13. Since the completion of this work conditions have been reported that allow
such a transformation: Schareina, T.; Zapf, A.; Cotté, A.; Müller, N.; Beller, M.
Synthesis 2008, 3351–3355.