Communication
ChemComm
When DMF and DMA were used as the solvent (ESI,† Table S2, the support and the palladium species, impacting the leaching of
entries 2 and 3), ICP-MS analysis indicated that 5% of Pd was the palladium species.
leached into the solution. Insignificant Pd leaching occurred
In conclusion, we have achieved an efficient intramolecular C–N
when 1,4-dioxane and toluene were used as the solvent (ESI,† bond formation via C–H activation to carbazoles catalyzed by
Table S2, entries 4 and 5). Very minor Pd leaching was detected supported Pd nanoparticles. The C–H amination catalyzed by the
when Ag–Pd/C, Ag@Pd/C and Ag2S@Pd/C catalysts were used Pd nanoparticles most likely proceeded via a soluble Pd species.
(ESI,† Table S2, entries 7–9). These results showed a correlation
between the amount of Pd leached into the solution and the
catalytic activity of the Pd-based nanocatalyst, further confirm-
ing the homogeneous nature of the active catalyst.
Notes and references
1 (a) F. Collet, R. H. Dodd and P. Dauban, Chem. Commun., 2009,
5061; (b) M. Kienle, S. R. Dubbaka, K. Brade and P. Knochel,
Selected Pd nanocatalysts were also subjected to XPS analysis to
determine the surface oxidation state of Pd (ESI,† Fig. S7). The Pd 3d
XPS spectra of Pd/C, Pd/CeO2, Ag–Pd/C and Ag2S@Pd/C could be
deconvoluted into two pairs of doublets. The doublet with a higher
binding energy (BE) was attributed to Pd(II), while that with a lower
BE was assigned to Pd(0). The inactive Ag–Pd/C nanocomposite
material contained mainly Pd(0) surface species (B91%), while the
active Pd/C and Pd/CeO2 catalysts and the inactive Ag2S@Pd/C
nanomaterial contained more oxidized Pd(II) surface species
(B60–88%). The BEs of the Pd(II) 3d3/2 and 3d5/2 peaks for the
inactive Ag2S@Pd/C nanomaterial were shifted to lower values
(336.9 and 342.1 eV), as compared to the active Pd/C and Pd/CeO2
catalysts (337.1–337.4 eV and 342.3–342.7 eV). The presence of
mainly Pd(0) surface species on Ag–Pd/C and the different types
of Pd(II) surface species on Ag2S@Pd/C suggested different Pd
surface species and interactions with the support might account
for the dissimilar leaching behavior of these inactive nanocomposite
materials, as compared to the active Pd/C and Pd/CeO2 catalysts.
Based on these results, we propose a mechanism for the C–H
amination catalyzed by the Pd/C nanomaterial (ESI,† Scheme S1).
Soluble Pd(II) species could be leached into the solution from the
Eur. J. Org. Chem., 2007, 4166.
2 Comprehensive Organic Synthesis, ed. B. M. Trost and I. Fleming,
Pergamon Press, Oxford, 1991, vol. 6.
3 (a) T. E. Mu¨ller, K. C. Hultzsch, M. Yus, F. Foubelo and M. Tada,
Chem. Rev., 2008, 108, 3795; (b) F. E. Michael and B. M. Cochran,
J. Am. Chem. Soc., 2006, 128, 4246; (c) Z. Zhang, S. D. Lee and
R. A. Widenhoefer, J. Am. Chem. Soc., 2009, 131, 5372.
4 (a) R. Severin and S. Doye, Chem. Soc. Rev., 2007, 36, 1407;
(b) F. Pohlki and S. Doye, Chem. Soc. Rev., 2003, 32, 104.
5 (a) M. Johannsen and K. A. Jorgensen, Chem. Rev., 1998, 98, 1689;
(b) G. T. Rice and M. C. White, J. Am. Chem. Soc., 2009, 131, 11707.
6 (a) T. D. Nixon, M. K. Whittlesey and J. M. J. Williams, Dalton Trans.,
´
2009, 753; (b) G. Guillena, D. J. Ramon and M. Yus, Chem. Rev., 2010,
110, 1611.
7 (a) D. S. Surry and S. L. Buchwald, Angew. Chem., Int. Ed., 2008,
47, 6338; (b) J. F. Hartwig, Acc. Chem. Res., 2008, 41, 1534; (c) D. Maiti
and S. L. Buchwald, J. Am. Chem. Soc., 2009, 131, 17423.
8 (a) W. C. P. Tsang, N. Zhang and S. Buchwald, J. Am. Chem. Soc.,
2005, 127, 14560; (b) W. C. P. Tsang, R. H. Munday, G. Brasche,
N. Zhang and S. Buchwald, J. Org. Chem., 2008, 73, 7603.
9 J. A. Jordan-Hore, C. C. C. Johansson, M. Gulias, E. M. Beck and
M. J. Gaunt, J. Am. Chem. Soc., 2008, 130, 16184.
10 (a) S. R. Fix, J. L. Brice and S. S. Stahl, Angew. Chem., Int. Ed., 2002,
41, 164; (b) M. M. Rogers, J. E. Wendlandt, I. A. Guzei and S. S. Stahl,
Org. Lett., 2006, 8, 2257; (c) V. I. Timokhin, N. R. Anastasi and
S. S. Stahl, J. Am. Chem. Soc., 2003, 125, 12996; (d) M. M. Rogers,
V. Kotov, J. Chatwichien and S. S. Stahl, Org. Lett., 2007, 9, 4331.
11 T.-S. Mei, X. Wang and J.-Q. Yu, J. Am. Chem. Soc., 2009, 131, 10806.
surface defect sites of the Pd nanoparticles. This leaching process 12 (a) Y. Obora, Y. Shimizu and Y. Ishii, Org. Lett., 2009, 11, 5058;
(b) Y. Shimizu, Y. Obora and Y. Ishii, Org. Lett., 2010, 12, 1372.
13 (a) D. Astruc, F. Lu and J. R. Aranzaes, Angew. Chem., Int. Ed., 2005,
could be facilitated by the coordinating DMSO solvent and oxidation
to Pd(II) by O2 gas. The homogeneous Pd(II) species would then form
44, 7852; (b) J. M. Campelo, D. Luna, R. Luque, J. M. Marinas and
a complex with the amide moiety of the substrate, and activate the
aromatic C–H bond. Elimination of the product would generate a
Pd(0) species which would re-oxidize to Pd(II) in the presence of
DMSO and O2. Ultimately, the dissolved Pd species would reattach
to the existing Pd nanoparticles to form larger clusters. The different
catalytic activities of the palladium nanomaterials on different
supports could be attributed to the different interactions between
A. A. Romero, ChemSusChem, 2009, 2, 18.
14 J. Yang, E. H. Sargent, S. O. Kelley and J. Y. Ying, Nat. Mater., 2009, 8, 683.
15 (a) A. Howard, C. E. J. Mitchell and R. G. Egdell, Surf. Sci., 2002,
515, L504; (b) A. Imre, D. L. Beke, E. Gontier-Moya, I. A. Szabo and
E. Gillet, Appl. Phys. A: Mater. Sci. Process., 2000, 71, 19; (c) R. Narayanan
and M. A. El-Sayed, J. Am. Chem. Soc., 2003, 125, 8340.
16 (a) B. A. Steinhoff, S. R. Fix and S. S. Stahl, J. Am. Chem. Soc., 2002,
124, 766; (b) M. S. Chen and M. C. White, J. Am. Chem. Soc., 2004,
126, 1346.
9052 | Chem. Commun., 2014, 50, 9049--9052
This journal is ©The Royal Society of Chemistry 2014