10.1002/ejoc.201801147
European Journal of Organic Chemistry
COMMUNICATION
fused tropanes. The reaction proceeds through a sequential
Pd/C-catalyzed dehydrogenative formation of azomethine ylides
from amines and 1,3-dipolar cycloaddition. It allows the
generation of structurally complex benzo-fused tropanes in good
yields with excellent diastereoselectivities under mild reaction
conditions. Moreover, preliminary results of the asymmetric
version of the reaction reveal that the copper catalyst and chiral
monophosphoramidite ligand can furnish optically active
products with moderate ee.
A. Maurya, Org. Chem. Front. 2015, 2, 1308-1312; g) D.
Chandrasekhar, S. Borra, J. B. Nanubolu, R. A. Maurya, Org. Lett.
2016, 18, 2974-2977; h) A. Fujiya, M. Tanaka, E. Yamaguchi, N. Tada,
A. Itoh, J. Org. Chem. 2016, 81, 7262-7270.
[4]
a) C. Yu, Y. Zhang, S. Zhang, H. Li, W. Wang, Chem. Commun. 2011,
47, 1036-1038; b) C. Feng, J.-H. Su, Y. Yan, F. Guo, Z. Wang, Org.
Biomol. Chem. 2013, 11, 6691-6694; c) H. M. Huang, Y. J. Li, Q. Ye, W.
B. Yu, L. Han, J. H. Jia, J. R. Gao, J. Org. Chem. 2014, 79, 1084-1092;
d) H.-M. Huang, F. Huang, Y.-J. Li, J.-H. Jia, Q. Ye, L. Han, J.-R. Gao,
RSC Adv. 2014, 4, 27250-27258; e) S. Nekkanti, N. P. Kumar, P.
Sharma, A. Kamal, F. M. Nachtigall, O. Forero-Doria, L. S. Santos, N.
Shankaraiah, RSC Adv. 2016, 6, 2671-2677; f) W. Wang, J. Sun, H. Hu,
Y. Liu, Org. Biomol. Chem. 2018, 16, 1651-1658.
[5]
a) R. Grigg, F. Heaney, J. Chem. Soc., Perkin Trans. 1 1989, 198; b) R.
Grigg, F. Heaney, J. Idle, A. Somasunderam, Tetrahedron Lett. 1990,
31, 2767-2770; c) R. Grigg, A. Somasunderam, V. Sridharan, A. Keep,
Synlett 2009, 2009, 97-99; d) R. M. Gorman, M. A. Little, J. A. Morris, V.
Sridharan, Chem. Commun. 2012, 48, 9537-9539; e) J. Windle, M.
Allison, H. Shepherd, V. Sridharan, RSC Adv. 2014, 4, 2624-2627; f) M.
Allison, V. Sridharan, Tetrahedron Lett. 2015, 56, 6551-6555; g) R.
Lowe, S. Fathy, V. Sridharan, Tetrahedron Lett. 2017, 58, 2658-2660.
G. Ahmed, A. Bohnstedt, H. J. Breslin, J. Burke, M. A. Curry, J. L.
Diebold, B. Dorsey, B. J. Dugan, D. Feng, D. E. Gingrich, T. Guo, K.-K.
Ho, K. S. Learn, J. G. Lisko, R.-Q. Liu, E. F. Mesaros, K. Milkiewicz, G.
R. Ott, J. Parrish, J. P. Theroff, T. V. Thieu, R. Tripathy, T. L. Underiner,
J. C.Wagner, L.Weinberg, G. J.Wells, M. You, C. A. Zificsak, PCT Int.
Appl. WO 2008051547, 2008.
Experimental Section
General procedure for the synthesis of tropanes 5 or 7. Esters 3 or 6
(0.1 mmol), nitroalkenes 4 (30 mg, 0.2 mmol) and Pd/C (10.6 mg, 0.01 m
mol) were added in an oven-dried Schlenk tube. The tube was then seale
d, evacuated, and backfilled with nitrogen using standard Schlenk techni
que. Toluene (1 mL) was sequentially added by syringe at ambient temp
erature. The resulting mixture was heated to 70 °C (oil bath) for 36 hours.
Solvents were evaporated under reduced pressure. The residue was dir
ected purified by column chromatography on silica gel to afford the comp
ound 5 or 7.
[6]
[7]
[8]
[9]
J. Ammenn, M. Paal, G. Ruehter, T. Schotten, W. Stenzel, PCT Int.
Appl. WO 2000078724, 2000.
E. H. Wong, J. A. Kemp, T. Priestley, A. R. Knight, G. N. Woodruff, L. L.
Iversen, Proc. Natl. Acad. Sci. U. S. A. 1986, 83, 7104-7108.
a) G. L. Grunewald, D. J. Sall, J. A. Monn, J. Med. Chem. 1988, 31,
433-444; b) A. Padwa, D. C. Dean, M. H. Osterhout, L. Precedo, M. A.
Semones, J. Org. Chem. 1994, 59, 5347-5357; c) K. P. Constable, B. E.
Blough, F. I. Carroll, Chem. Commun. 1996, 717-718; d) G. A.
Molander, E. D. Dowdy, J. Org. Chem. 1999, 64, 6515-6517; e) M.
Ikeda, M. Hamada, S. A. A. El Bialy, K. Matsui, S. Kawakami, Y.
Nakano, S. M. M. Bayomi, T. Sato, Heterocycles 2000, 52, 571-574; f)
K. Funabashi, H. Ratni, M. Kanai, M. Shibasaki, J. Am. Chem. Soc.
2001, 123, 10784-10785; g) H.-S. Yeom, J.-E. Lee, S. Shin, Angew.
Chem. Int. Ed. 2008, 47, 7040-7043; Angew. Chem. 2008, 120, 7148-
7151; h) S. Xing, W. Pan, C. Liu, J. Ren, Z. Wang, Angew. Chem. Int.
Ed. 2010, 49, 3215-3218; Angew. Chem. 2010, 122, 3283-3286; i) Q. Li,
X. Jiang, C. Fu, S. Ma, Org. Lett. 2011, 13, 466-469; j) D. M. Schultz, J.
P. Wolfe, Org. Lett. 2011, 13, 2962-2965; k) R. Narayan, J. O. Bauer, C.
Strohmann, A. P. Antonchick, H. Waldmann, Angew. Chem. Int. Ed.
2013, 52, 12892-12896; Angew. Chem. 2013, 125, 13130-13134; l) J.-
H. Xu, S.-C. Zheng, J.-W. Zhang, X.-Y. Liu, B. Tan, Angew. Chem. Int.
Ed. 2016, 55, 11834-11839; Angew. Chem. 2016, 128, 12013-12018;
m) K. H. V. Reddy, E. Yen-Pon, S. Cohen-Kaminsky, S. Messaoudi, M.
Alami, J. Org. Chem. 2018, 83, 4264-4269. n) Sun, B.; Ren, J.; Xing,
S.; Wang, Z. Adv. Synth. Catal. 2018, 360, 1529-1537; o) Zheng, X.;
Yang, W.-L.; Liu, Y.-Z.; Wu, S.-X.; Deng, W.-P. Adv. Synth. Catal. 2018,
360, 2843-2853.
Acknowledgements
We are grateful for financial support from the National Natural
Science Foundation of China (NNSFC) (grant 21672049) and
Hefei University of Technology.
Keywords: Palladium • Dehydrogenative • [3 + 2] Cycloaddition
• Tropanes • Asymmetric
[1]
a) A. Padwa, W. H. Pearson, Synthetic Applications of 1,3-Dipolar
Cycloaddition Chemistry Toward Heterocycles and Natural Products,
John Wiley & Sons, Inc., New York, 2002; b) T. Hashimoto, K. Maruoka,
Chem. Rev. 2015, 115, 5366-5412; c) M. S. Singh, S. Chowdhury, S.
Koley, Tetrahedron 2016, 72, 1603-1644; d) Y. Wei, M. Shi, Org. Chem.
Front. 2017, 4, 1876-1890.
[2]
a) I. Coldham, R. Hufton, Chem. Rev. 2005, 105, 2765-2810; b) G.
Pandey, P. Banerjee, S. R. Gadre, Chem. Rev. 2006, 106, 4484-4517;
c) R. Narayan, M. Potowski, Z. J. Jia, A. P. Antonchick, H. Waldmann,
Acc. Chem. Res. 2014, 47, 1296-1310; d) J. Adrio, J. C. Carretero,
Chem. Commun. 2014, 50, 12434-12446; e) A. Mendoza, J. Otero-
Fraga, M. Montesinos-Magraner, Synthesis 2016, 49, 802-809; f) G.
Pandey, D. Dey, S. K. Tiwari, Tetrahedron Lett. 2017, 58, 699-705; g) H.
Döndas, M. de Gracia Retamosa, J. Sansano, Synthesis 2017, 49,
2819-2851; h) B. Bdiri, B.-J. Zhao, Z.-M. Zhou, Tetrahedron:
Asymmetry 2017, 28, 876-899; i) X. Fang, C. J. Wang, Org. Biomol.
Chem. 2018, 16, 2591-2601.
[10] a) X. Wu, D.-F. Chen, S.-S. Chen, Y.-F. Zhu, Eur. J. Org. Chem. 2015,
468-473; b) Y. Yao, H.-J. Zhu, F. Li, C.-F. Zhu, Y.-F. Luo, X. Wu, E. A.
B. Kantchev, Adv. Synth. Catal. 2017, 359, 3095-3101; c) X. Wu, H. J.
Zhu, S. B. Zhao, S. S. Chen, Y. F. Luo, Y. G. Li, Org. Lett. 2018, 20,
32-35.
[11] The relative configuration of 7da was assigned by comparison of
chemical shifts and coupling constants with those of known compound
reported by Waldmann, Antonchick and co-workers, see ref. 9k. The
relative configurations of all other compounds were assigned by
analogy.
[3]
a) Y. Q. Zou, L. Q. Lu, L. Fu, N. J. Chang, J. Rong, J. R. Chen, W. J.
Xiao, Angew. Chem. Int. Ed. 2011, 50, 7171-7175; Angew. Chem. 2011,
123, 7309-7313; b) M. Rueping, D. Leonori, T. Poisson, Chem.
Commun. 2011, 47, 9615-9617; c) S. Guo, H. Zhang, L. Huang, Z. Guo,
G. Xiong, J. Zhao, Chem. Commun. 2013, 49, 8689-8691; d) L. Huang,
J. Zhao, Chem. Commun. 2013, 49, 3751-3753; e) C. Vila, J. Lau, M.
[12] The absolute configuration of 5 was established according to the
retention time in HPLC using chiral columns and comparison with the
sequence of retention times obtained for the analogues reported by
Waldmann, Antonchick and co-workers, see ref. 9k.
Rueping, Beilstein
J Org Chem 2014, 10, 1233-1238; f) D.
Chandrasekhar, S. Borra, J. S. Kapure, G. S. Shivaji, G. Srinivasulu, R.
This article is protected by copyright. All rights reserved.