ligands, which, in turn, can be represented by the rather soft
potential energy curve typically associated with aryl–aryl torsion
angles.
In a sense, our supramolecular success mirrors quite closely the
relative strengths of the interactions that are responsible for the
different recognition and binding events that take place in the
course of these reactions: metal–ligand (100%), hydrogen-bonds
(71%) and van der Waals forces (50%).
We are beginning to gain a better understanding of how
to design supramolecular ligands and synthetic strategies in
such a way as to minimize unwanted structural interference.
However, in order to make more, and more rapid, progress we
will require further systematic studies that clearly represent the
overall supramolecular outcome, success and failure, with respect
to clearly delineated assembly strategies.
F. J. Martinez-Martinez, H. Hoepfl and I. I. Padilla-Martinez, Cryst.
Growth Des., 2003, 3, 35; (d) A. J. Blake, N. R. Champness, A. N.
Khlobystov, D. A. Lemenovskii, W.-S. Li and M. Schroder, Chem.
Commun., 1997, 15, 1339; (e) A. B. Oren, M. D. Curtis and J. W.
Kampf, Chem. Mater., 2000, 12, 1519.
6 (a) C. B. Aakero¨y, A. M. Beatty and K. R. Lorimer, J. Chem. Soc.,
Dalton Trans., 2000, 21, 3869; (b) C. B. Aakero¨y, A. M. Beatty, D. S.
Leinen and K. R. Lorimer, Chem. Commun., 2000, 11, 935; (c) C. B.
Aakero¨y, A. M. Beatty, J. Desper, M. O’Shea and J. Valde´s-Mart´ınez,
Dalton Trans., 2003, 20, 3956; (d) D. Bose, J. Banerjee, S. H. Rahaman,
G. Mostafa, H.-K. Fun, R. D. Bailey Walsh, M. J. Zaworotko and B. K.
Ghosh, Polyhedron, 2004, 23, 2045; (e) T. J. Burchell, D. J. Eisler and
R. J. Puddephatt, Inorg. Chem., 2004, 43, 5550.
7 (a) D. W. Thompson, On Growth and Form, Cambridge University
Press, Cambridge, 1942; (b) S. J. Mann, J. Chem. Soc., Dalton Trans.,
1997, 21, 3953; (c) M. Li and S. Mann, J. Mater. Chem., 2004, 14, 2260;
(d) S. Mann, Chem. Commun., 2004, 1, 1.
8 (a) P. Wu, M. Bhamidipati, M. Coles and D. V. G. L. N. Roa, Chem.
Phys. Lett., 2004, 400, 506; (b) B. J. Kooi, J. Th and M. De Hosson,
J. Appl. Phys., 2004, 95, 4714; (c) H. Okumura, D. J. Twisselmann,
R. D. McMichael, M. Q. Huang, Y. N. Hsu, D. E. Laughlin and M. E.
McHenry, J. Appl. Phys., 2003, 93, 6528.
Acknowledgements
9 C. B. Aakero¨y, N. Schultheiss and J. Desper, Inorg. Chem., 2005, 44,
4983.
Financial support from NSF (CHE-0316479) and Kansas State
University is gratefully acknowledged. We also thank Takeo
Iwamoto for the ESI-IT-MS data collections.
10 A single sp-carbon is missing from the 13C NMR spectra.
11 Compound 7: Data were collected on a SMART APEX at 100 K. The
copper complex sits on a crystallographic inversion center. Coordinates
for the amine hydrogens, H12A and H12B, were allowed to refine.
Compound 8: Data were collected on a SMART 1000 at 100 K. The
lattice contains two independent copper complexes, each sitting on a
crystallographic inversion center. Two of the four 2-fluorobenzoates
existed in two nearly superimposable rotamers, differing in the relative
placement of the fluorine substituent. Coordinates for the amine
hydrogens, H22A, H22B, H62A, and H62B, were allowed to refine.
Compound 9: Data were collected on a SMART 1000 at 100 K. The
copper complex sits on a crystallographic inversion center. Coordinates
for the amine hydrogens, H12A and H12B, were allowed to refine.
Compound 10: Data were collected on a SMART 1000 at 100 K. The
copper complex sits on a crystallographic inversion center. Both
2-fluorobenzoates existed in two nearly superimposable rotamers,
differing in the relative placement of the fluorine substituent. The two
amine hydrogens, H22A and H22B, were placed in idealized positions
and were allowed to ride. Compound 11: Data were collected on a
SMART APEX at 100 K. The copper complex sits on a crystallographic
inversion center. The asymmetric unit contains a nearly superimposed
disordered solvent pair of ethanol and acetonitrile. Occupancies for
these two species were allowed to refine during initial model refinement
and were fixed at 0.3 and 0.4 for final cycles. Coordinates for the amine
hydrogens, H12A and H12B, were allowed to refine. Compound 12:
Data were collected on a SMART 1000 at 100 K. The copper complex
sits on a crystallographic inversion center. Both 2-fluorobenzoates
existed in two nearly superimposable rotamers, differing in the relative
placement of the fluorine substituent. The (nonsymmetric) acetylene
molecule sits on a crystallographic inversion center, with the 2-amino
substituent having 50% site occupancy. The amino hydrogens were
located in calculated positions and were allowed to ride. Compound
13: Data were collected on a SMART APEX at 100 K. The copper
complex sits on a crystallographic inversion center. The (nonsymmetric)
acetylene molecule sits on a crystallographic inversion center, with the
2-amino substituent having 50% site occupancy. The amino hydrogens
were located incalculated positions and were allowed to ride.
12 SMART v5.060, Bruker Analytical X-ray Systems, Madison, WI, 1997–
1999.
References and notes
1 (a) K.-W. Chi, C. Addicott, A. M. Arif and P. J. Stang, J. Am. Chem.
Soc., 2004, 126, 16569; (b) B. Chatterjee, J. C. Noveron, M. J. E.
Resendiz, J. Liu, T. Yamamoto, D. Parker, M. Cinke, C. V. Nguyen,
A. M. Arif and P. J. Stang, J. Am. Chem. Soc., 2004, 126, 10645; (c) K.
Nakabayashi, M. Kawano, M. Yoshizawa, S. Ohkoshi and M. Fujita,
J. Am. Chem. Soc., 2004, 126, 16694.
2 (a) M. Yoshizawa, S. Miyagi, M. Kawano, K. Ishiguro and M. Fujita,
J. Am. Chem. Soc., 2004, 126, 9172; (b) M. Fujita, M. Tominaga, A.
Hori and B. Therrien, Acc. Chem. Res., 2005, 38, 369; (c) M. Yoshizawa,
Y. Takeyama, T. Okano and M. Fujita, J. Am. Chem. Soc., 2003, 125,
3243; (d) J. L. C. Rowsell and O. M. Yaghi, Microporous Mesoporous
Mater., 2004, 73, 3; (e) J. L. C. Rowsell, A. R. Millward, K. S. Park and
O. M. Yaghi, J. Am. Chem. Soc., 2004, 126, 5666; (f) J. L. Atwood, L. J.
Barbour, S. J. Dalgarno, M. J. Hardie, C. L. Raston and H. R. Webb,
J. Am. Chem. Soc., 2004, 126, 13170.
3 (a) R. J. Hill, D.-L. Long, N. R. Champness, P. Hubberstey and M.
Schroder, Acc. Chem. Res., 2005, 38, 335; (b) K. Campbell, C. J. Kuehl,
M. J. Ferguson, P. J. Stang and R. R. Tykwinski, J. Am. Chem. Soc.,
2002, 124, 7266; (c) D. Braga, S. L. Giaffreda, F. Grepioni and M.
Polito, CrystEngComm, 2004, 6, 458–462; (d) J. F. Berry, F. A. Cotton,
C. S. Fewox, T. Lu, C. A. Murillo and X. Wang, Dalton Trans., 2004, 15,
2297; (e) G. J. McManus, Z. Wang and M. J. Zaworotko, Cryst. Growth
Des., 2004, 4, 11; (f) D. Braga, L. Brammer and N. R. Champness,
CrystEngComm, 2005, 7, 1; (g) N. Schultheiss, C. L. Barnes and E.
Bosch, Cryst. Growth Des., 2003, 3, 573; (h) M. Oh, C. L. Stern and
C. A. Mirkin, Inorg. Chem., 2005, 44, 2647.
4 (a) Supramolecular Assembly via Hydrogen Bonds II. Structure and
Bonding, ed. D. M. P. Mingos, Springer-Verlag, Berlin, Heidelberg,
New York, 2004; (b) G. R. Desiraju, Acc. Chem. Res., 1996, 29, 441;
(c) C. B. Aakeroy, A. M. Beatty and B. A. Helfrich, J. Am. Chem. Soc.,
2002, 124, 14425; (d) F. M. Raymo, M. D. Bartberger, K. N. Houk and
J. F. Stoddart, J. Am. Chem. Soc., 2001, 123, 9264; (e) J.-H. Fournier,
T. Maris, J. D. Wuest, W. Guo and E. Galoppini, J. Am. Chem. Soc.,
2003, 125, 1002; (f) D. Braga, M. Polito, D. D’Addario and F. Grepioni,
Cryst. Growth Des., 2004, 4, 1109.
13 SAINT v6.02, Bruker Analytical X-ray Systems, Madison, WI, 1997–
1999.
14 SHELXTL v5.10, Bruker Analytical X-ray Systems, Madison, WI,
1997.
5 (a) O. Ohmori, M. Kawano and M. Fujita, CrystEngComm, 2005,
7, 255; (b) A. Sundararaman, L. N. Zakharov, A. L. Rheingold and
F. Jaekle, Chem. Commun., 2005, 13, 1708; (c) E. V. Garcia-Baez,
15 K. Sonogashira, Y. Tohda and N. Hagihara, Tetrahedron Lett., 1975,
16, 4467.
This journal is
The Royal Society of Chemistry 2006
Dalton Trans., 2006, 1627–1635 | 1635
©