Z.-M. Hao, X.-M. Zhang / Inorganic Chemistry Communications 9 (2006) 57–59
59
˚
of the acetonitrile. We tried to isolate 2-methylimidazoline
using catalytic amounts of metal ions but failed. Thus for-
mation of insoluble solids 1 and 2 is less partly responsible
for nucleophilic addition of diamine to organonitrile. The
possible intermediate amidine undergoes rapid intramolec-
ular ring closure.
To sum up, two one-dimensional coordination polymers
of 2-methylimidazoline have been prepared by solvother-
mal reaction involving in situ nucleophilic cycloaddition
reaction of ethylenediamine and acetonitrile to form
2-methylimidazoline. The ligand reaction described here,
although not unprecedented, might open up new horizons
for the preparation of unusual types of cyclic amidine
ligands by use of first-row transition metal ions as catalysts
[17].
k = 0.71073 A). The structure was solved with the direct
methods and refined with full-matrix least-squares tech-
nique (SHELX-97) [18]. All non-hydrogen atoms were
refined anisotropically and all hydrogen atoms were were
geometrically placed and refined isotropically. For 1 the
final R1 value is 0.0624 for 87 parameters and 1387 unique
reflections and the final wR2 is 0.1154 for all 2418 reflec-
tions, and the final R1 value is 0.0494 for 226 parameters
and 3418 unique reflections and the final wR2 is 0.1194
for all 4511 reflections for 2.
Acknowledgements
This work was financially supported by NNSFC
(20401011), A Foundation for the Author of National
Excellent Doctoral Dissertation of PR China (200422)
and Youth Foundation of Shanxi (20041009).
Supplementary data
Additional material comprising atomic coordinates,
thermal parameters, and the full bond lengths and bond
angles have been deposited with the Cambridge Crystallo-
graphic Data Center (CCDC 278644 and 278645).
References
[1] S. Materazzi, E. Vasca, Thermochim. Acta 373 (2001) 7.
[2] R.J. Sundberg, R.B. Martin, Chem. Rev. 74 (1974) 471.
[3] H. Sigel, R.B. Martin, Chem. Rev. 82 (1982) 385.
[4] S. Sjoberg, Pure Appl. Chem. 69 (1997) 1549.
Note
[5] L.D. Petit, Pure Appl. Chem. 56 (1984) 247.
[6] H. Sigel, B.E. Fisher, B. Prijs, J. Am. Chem. Soc. 99 (1977) 4489.
[7] G.V. Boyd, in: S. Patai, Z. Rappoport (Eds.), The Chemistry of
Amidines and Imidates, vol. 2, Wiley, Chichester, 1991, p. 339.
[8] S.-I. Murahashi, H. Takaya, Acc. Chem. Res. 33 (2000) 225.
[9] (a) S.-I. Murahashi, T. Naota, Bull. Chem. Soc. Jpn. 69 (1996)
1805;
(b) S.-I. Murahashi, T. Naota, Chemtracts-Org. Chem. 7 (1994) 281.
[10] (a) D.P. Fairlie, W.G. Jackson, B.W.H. Skelton, A.H. White, W.A.
Wickramasinghe, T.C. Woon, H. Taube, Inorg. Chem. 36 (1997)
1020;
(b) R.W. Hay, F.M. Mclaren, Transition Met. Chem. 24 (1999) 398,
and references in these works.
[11] R.A. Michelin, M. Mozzon, R. Bertani, Coord. Chem. Rev. 147
(1996) 299, and references therein.
[12] J.H. Forsberg, V.T. Spaziano, T.M. Balasubramanian, G.K. Liu,
S.A. Kinsley, C.A. Duckworth, J.J. Poteruca, P.S. Brown, J.L. Miller,
J. Org. Chem. 52 (1987) 1017.
[13] R.A. Michelin, M. Mozzon, R. Bertani, F. Benetollo, G. Bombieri,
R.J. Angelici, Inorg. Chim. Acta. 222 (1994) 327.
[14] Y.N. Kukushkin, N.P. Kiseleva, E. Zangrando, V.Y. Kukushkin,
Inorg. Chim. Acta. 285 (1999) 203.
[15] X.-M. Zhang, Coord. Chem. Rev. 249 (2005) 1201, and Refs. therein.
[16] J.-H. Yu, J.-Q. Xu, L.-J. Zhang, J. Lu, X. Zhang, H.-Y. Bie, J. Mol.
Struct. 743 (2005) 243.
[17] J. Baker, M. Kilner, Coord. Chem. Rev. 133 (1994) 219.
[18] G.M. Sheldrick, SHELX-97, Program for X-ray Crystal Structure
Solution and Refinement, Go¨ttingen University, Germany, 1997.
Anal. Calc. for 1 C10H16CoN4O4: C, 38.11; H, 5.12; N,
17.78; O, 20.30. Found: C, 38.09; H, 5.13; N, 17.76; O,
20.32. IR (KBr,cmÀ1): 3147s, 2423w, 1633s, 1397s,
1321m, 1286m, 1161m, 1072, 965m, 858m, 805w, 707w,
546m. Anal. Calc. for 2 C16H20N4O4Zn: C, 48.32; H,
5.07; N, 14.09; O, 16.09. Found: C, 48.35; H, 5.10; N,
14.10; O, 16.05. IR (KBr, cmÀ1): 3413m, 3112s, 1700m,
1599m, 1414s, 1179m, 1027m, 977w, 948w, 860w, 523m.
Crystal data for 1 C10H16CoN4O4: monoclinic, space
˚
group C2/c, Mr = 315.20, a = 11.6634(16) A, b =
˚
˚
12.2495(16) A,
c = 9.3138
(13) A,
a = 90°,
b =
3
˚
95.387(3)°,c = 90°, V = 1324.8(3) A , Z = 4, Dc = 1.580
g cmÀ3, F(000) = 652, l = 1.311 mmÀ1, Tmax = 0.9494,
Tmin = 0.7794, S = 0.950, Dqmax/Dqmin (e AÀ3) = 0.376/
À0.357. Crystal data for 2 C16H20ZnN4O4: monoclinic,
˚
space group P21, Mr = 397.73 a = 10.0973 (15) A,
˚
˚
b = 7.9349(11) A,
c = 11.8244(18) A,
a = 90°,
b =
3
˚
115.098(2)°, c = 90°, V = 857.9(2) A , Z = 2, Dc = 1.540 g
cmÀ3, F(000) = 412, l = 1.460 mmÀ1, Tmax = 0.9047,
Tmin = 0.8107, S = 1.063, Dqmax/Dqmin (e AÀ3) = 0.641/
À0.498. Diffraction intensities were collected at 293 K on
a
Bruker Apex CCD diffractometer (Mo Ka,