M. Mori et al. / Tetrahedron 62 (2006) 3872–3881
3881
Lett. 2001, 3, 1161. (i) Mori, M.; Kitamura, T.; Sato, Y.
Synthesis 2001, 654. (j) Kitamura, T.; Sato, Y.; Mori, M. Chem.
Commun. 2001, 1258. (k) Mori, M.; Kuzuba, Y.; Kitamura, T.;
Sato, Y. Org. Lett. 2002, 4, 3855. (l) Kitamura, T.; Sato, Y.;
Mori, M. Adv. Synth. Catal. 2002, 344, 678. (m) Mori, M.;
Tonogaki, K.; Nishiguchi, N. J. Org. Chem. 2002, 67, 224. (n)
Saito, N.; Sato, Y.; Mori, M. Org. Lett. 2002, 4, 803.
(o) Tonogaki, K.; Mori, M. Tetrahedron Lett. 2002, 43, 2235.
(p) Mori, M.; Tomita, T.; Kita, Y.; Kitamura, T. Tetrahedron
Lett. 2004, 45, 4397. (q) Kitamura, T.; Kuzuba, Y.; Sato, Y.;
Wakamatsu, H.; Fujita, R.; Mori, M. Tetrahedron 2004, 60,
7375. (r) Kitamura, T.; Sato, Y.; Mori, M. Tetrahedron 2004, 60,
9649. (s) Mori, M.; Wakamatsu, H.; Tonogaki, K.; Fujita, R.;
Kitamura, T.; Sato, Y. J. Org. Chem. 2005, 70, 1066.
(400 MHz, CDCl3) d 1.45–1.54 (m, 2H), 1.96–2.02 (m, 2H),
2.44 (s, 3H), 2.48–2.55 (m, 2H), 2.75–2.85 (m, 2H), 3.63–
3.68 (m, 2H), 3.78 (s, 3H), 3.81 (s, 3H), 7.31 (d, JZ8.3 Hz,
2H), 7.65 (d, JZ8.3 Hz, 2H); 13C NMR (100 MHz, CDCl3)
d 20.8, 21.6, 22.8 (2C), 26.6, 46.5, 52.0, 52.3, 115.3, 120.8,
128.9, 129.8, 136.7, 139.2, 142.0, 144.0, 166.0, 168.8;
EI-LRMS m/z 405 (MC), 374, 250, 218, 190, 158;
EI-HRMS m/z calcd for C20H23O6NS (MC) 405.1246,
found 405.1234.
References and notes
1. For recent reviews on metathesis, see; (a) Handbook of
Metathesis; Grubbs, R. H., Ed.; Wiley-VCH: Weinheim, 2003.
(b) Grubbs, R. H.; Miller, S. J.; Fu, G. C. Acc. Chem. Res.
1995, 28, 446. (c) Schmalz, H.-G. Angew. Chem., Int. Ed.
Engl. 1995, 34, 1833. (d) Schuster, M.; Blechert, S. Angew.
Chem., Int. Ed. 1997, 36, 2036. (e) Fu¨rstner, A., Ed.; Topics in
Organometallic Chemistry; Springer: Berlin, Heidelberg,
1998; Vol. 1. (f) Grubbs, R. H.; Chang, S. Tetrahedron
1998, 54, 4413. (g) Armstrong, S. K. J. Chem. Soc., Perkin
Trans. 1 1998, 371. (h) Phillips, A. J.; Abell, A. D. Aldrichim.
Acta 1999, 32, 75. (i) Fu¨rstner, A. Angew. Chem., Int. Ed.
2000, 39, 3012. (j) Trnka, T. M.; Grubbs, R. H. Acc. Chem.
Res. 2001, 34, 18. (k) Schrock, R. R. Tetrahedron 1999, 55,
8141. (l) Hoveyda, A. H.; Schrock, R. R. Chem. Eur. J. 2001,
7, 945. (m) Vernall, A. J.; Abell, A. D. Aldrichim. Acta 2003,
36, 93. (n) Connon, S. J.; Blechert, S. Angew. Chem., Int. Ed.
2003, 42, 1900. (o) Schrock, R. R.; Hoveyda, A. H. Angew.
Chem., Int. Ed. 2003, 42, 4592. (p) Katz, T. J. Angew. Chem.,
Int. Ed. 2005, 44, 3010. (q) Fu¨rstner, A.; Davies, P. W. Chem.
Commun. 2005, 2307. (r) Mori, M. J. Synth. Org. Chem. Jpn.
2005, 63, 423. (s) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D.
Angew. Chem., Int. Ed. 2005, 44, 4490.
4. For recent review on the chemistry of ynamines and ynamides,
see; (a) Zificsak, C. A.; Mulder, J. A.; Hsung, R. P.;
Rameshkumar, C.; Wei, L.-L. Tetrahedron 2001, 57, 7575 and
references cited therein. For recent examples of nitrogen-
heterocycles synthesis by cyclization of ynamide using
transition metals, see; (b) Witulski, B.; Stengel, T. Angew.
Chem., Int. Ed. 1998, 37, 489. (c) Witulski, B.; Stengel, T.
Angew. Chem., Int. Ed. 1999, 38, 2426. (d) Witulski, B.;
¨
Goßmann, M. Chem. Commun. 1999, 1879. (e) Rainier, J. D.;
Imbriglio, J. E. Org. Lett. 1999, 1, 2037. (f) Rainier, J. D.;
Imbriglio, J. E. J. Org. Chem. 2000, 65, 7272. (g) Witulski, B.;
´
´
Stengel, T.; Fernandez-Hernandez, J. M. Chem. Commun.
2000, 1965. (h) Huang, J.; Xiong, H.; Hsung, R. P.;
Rameshkumar, C.; Mulder, J. A.; Grebe, T. P. Org. Lett.
¨
2002, 4, 2417. (i) Witulski, B.; Lumtscher, J.; Bergstraßer, U.
´
Synlett 2003, 708. (j) Couty, S.; Loegault, B.; Meyer, C.;
Cossy, J. Org. Lett. 2004, 6, 2511. (k) Zhang, Y.; Hsung, R. P.;
Zhang, X.; Huang, J. Org. Lett. 2005, 7, 1047. (l) Dunetz, J. R.;
Danheiser, R. L. J. Am. Chem. Soc. 2005, 127, 5776.
5. For reviews on Diels–Alder reaction of dienamide, see; (a)
Petrzilka, M.; Grayson, J. I. Synthesis 1981, 753 and references
cited therein. (b) Campbell, A. L.; Lenz, G. R. Synthesis 1987,
421 and references cited therein. For recent examples of
preparation and reaction of dienamides, see; (c) Hu¨bner, S.;
Neumann, H.; Wangelin, A. J.; Klaus, S.; Stru¨bing, D.;
Klein, H. Synthesis 2005, 2084. (d) Gauvry, N.; Huet, F.
J. Org. Chem. 2001, 66, 583 and references cited therein.
6. Bru¨ckner, D. Synlett 2000, 1402.
2. For reviews on enyne metathesis, see; (a) Mori, M. Top.
Organomet. Chem. 1998, 1, 133. (b) Mori, M. J. Synth. Org.
Chem. Jpn. 1998, 56, 115. (c) Poulsen, C. S.; Madsen, R.
Synthesis 2003, 1. (d) Diver, S. T.; Giessert, A. J. Chem. Rev.
2004, 104, 1317. (e) Mori, M. J. Mol. Catal. A: Chem. 2004,
213, 73. For recent applications, see; (f) Clark, J. S.; Hamelin,
O. Angew. Chem., Int. Ed. 2000, 39, 372. (g) Fu¨rstner, A.;
Ackermann, L.; Gabor, B.; Goddard, R.; Lehmann, C. W.;
Mynott, R.; Stelzer, F.; Thiel, O. R. Chem. Eur. J. 2001, 7,
3236. (h) Schramm, M. P.; Reddy, D. S.; Kozmin, S. A.
Angew. Chem., Int. Ed. 2001, 40, 4274. (i) Timmer, M. S. M.;
Ovaa, H.; Filippov, D. V.; Van der Marel, G. A.; Van Boom,
J. H. Tetrahedron Lett. 2001, 42, 8231. (j) Hansen, E. C.;
Lee, D. J. Am. Chem. Soc. 2003, 125, 9582. (k) Royer, F.;
´
´
7. Rodrıguez, D.; Castedo, L.; Saa, C. Synlett 2004, 783.
8. Compounds (Z)-9 and (E)-9 were synthesized according to
literature procedure; Jones, A. D.; Knight, D. W.; Hibbs, D. E.
J. Chem. Soc., Perkin Trans. 1 2001, 1182.
9. (a) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H.
Angew. Chem., Int. Ed. Engl. 1995, 34, 2039. (b) Scholl, M.;
Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953.
10. For precedence of solvent effect on the reactivity of the
second-generation Ru–carbene complex, see; Fu¨rstner, A.;
Thiel, O. R.; Ackermann, L.; Schanz, H.-J.; Nolan, S. P.
J. Org. Chem. 2000, 65, 2204.
¨
Vilain, C.; Elkaım, L.; Grimaud, L. Org. Lett. 2003, 5, 2007.
(l) Lee, H.-Y.; Kim, H. Y.; Tae, H.; Kim, B. G.; Lee, J. Org.
Lett. 2003, 5, 3439. (m) Kaliappan, K. P.; Nandurdikar, R. S.
Chem. Commun. 2004, 2506. (n) Funel, J.-A.; Prunet, J. J. Org.
Chem. 2004, 69, 4555. (o) Kummer, D. A.; Brenneman, J. B.;
Martin, S. F. Org. Lett. 2005, 7, 4621.
11. When ene–ynamide was used as the substrate, the enyne
metathesis of terminal alkyne proceeded smoothly under argon
for the first time (cf. Ref. 3e). Recently, RCM of electron-rich
terminal alkynes using 1 without ethylene gas has been
reported (Ref. 2e,h). We continued to examine the reaction
under ethylene gas, since the yield of the cyclized product that
was obtained from the reaction under ethylene gas is higher
than that of the cyclized product obtained from the reaction
under argon.
3. (a) Kinoshita, A.; Mori, M. Synlett 1994, 1020. (b) Kinoshita, A.;
Mori, M. J. Org. Chem. 1996, 61, 8356. (c) Kinoshita, A.; Mori,
M. Heterocycles 1997, 46, 287. (d) Kinoshita, A.; Sakakibara,
N.; Mori, M. J. Am. Chem. Soc. 1997, 119, 12388. (e) Mori, M.;
Sakakibara, N.; Kinoshita, A. J. Org. Chem. 1998, 63, 6082.
(f) Kinoshita, A.; Sakakibara, N.; Mori, M. Tetrahedron 1999,
55, 8155. (g) Mori, M.; Kitamura, T.; Sakakibara, N.; Sato, Y.
Org. Lett. 2000, 2, 543. (h) Kitamura, T.; Mori, M. Org.