Communications
aimed at derivatizing the modular components and making
devices containing 6 and its derivatives.
Received: January 21, 2006
Keywords: electron transport · heterocycles ·
.
molecular electronics · rhenium
[1] E.Holder, B.M.W.Langeveld, U.S.Schubert, Adv. Mater. 2005,
17, 1109.
[2] G.Hughes, M.R.Bryce, J. Mater. Chem. 2005, 15, 94.
[3] H.Yersin, Top. Curr. Chem. 2004, 241, 1.
[4] J.Kido, Y.Okamoto, Chem. Rev. 2002, 102, 2357.
[5] Y.Kawamura, S.Yanagida, S.R.Forrest, J. Appl. Phys. 2002, 92,
87.
[6] J.Wang, R.Wang, J.Yang, Z.Zheng, M.D.Carducci, T.Cayou,
N.Peyghambarian, G.E.Jabbour, J. Am. Chem. Soc. 2001, 123,
6179.
Figure 2. HOMO, LUMO, and band gap energies of dppz, 2, 3, 5, and
6.
[7] M.Baldo, M.Segal, Phys. Status Solidi A 2004, 201, 1205.
[8] W.-Y. Wong, Z. He, S.-K. So, K.-L. Tong, Z. Lin, Organometallics
2005, 24, 4079.
those of dppz, 2, or 3, and thus 5 and 6 are expected to be
better hole-transporting materials.The electrochemical data
show that 6 has the smallest band gap energy of the
compounds studied, and the relative energies of its HOMO
and LUMO suggest that it favors transport of both holes and
electrons.
Note that the HOMO and LUMO energies of 6 lie within
the band gap of the host polymer PVK (Figure 3), so that the
charges should accumulate and recombine on 6 rather than on
[9] X.Gong, P.K.Ng, W.K.Chan,
Adv. Mater. 1998, 10, 1337.
[10] A.P.Kulkarni, C.J.Tonzola, A.Babel, S.A.Jenekhe,
Mater. 2004, 16, 4556.
[11] H.D.Stoeffler, N.B.Thornton, S.L.Temkin, K.S.Schanze,
Am. Chem. Soc. 1995, 117, 7119.
Chem.
J.
[12] R.Argazzi, E.Bertolasi, C.Chiorboli, C.A.Bignozzi, M.K.
Itokazu, N.Y.M.Iha, Inorg. Chem. 2001, 40, 6885.
[13] S.Ranjan, S.-Y.Lin, K.-C.Hwang, Y.Chi, W.-L.Ching, C.-S.Liu,
Y.-T. Tao, C.-H. Chien, S.-M. Peng, G.-H. Lee, Inorg. Chem.
2003, 42, 1248.
[14] S.Kan, X.Liu, F.Shen, J.Zhang, Y.Ma, G.Zhang, Y.Wang, J.
Shen, Adv. Funct. Mater. 2003, 13, 603.
[15] Y.Li, Y.Wang, Y.Zhang, Y.Wu, J.Shen,
257.
Synth. Met. 1999, 99,
[16] T.M.Clarke, K.C.Gordon, D.L.Officer, S.B.Hall, G.E.Collis,
A.K.Burrell, J. Phys. Chem. A 2003, 107, 11505.
[17] A.K.Burrell, J.Chen, G.E.Collis, D.K.Grant, D.L.Officer,
C.O.Too, G.G.Wallace, Synth. Met. 2003, 135–136, 97.
[18] D.Ossipov, E.Zamaratski, J.Chattopadhyaya, Helv. Chim. Acta
1999, 82, 2186.
[19] J.V.Caspar, T.J.Meyer, J. Phys. Chem. 1983, 87, 952.
[20] M.K.Brennaman, T.J.Meyer, J.M.Papanikolas,
J. Phys. Chem.
A 2004, 108, 9938.
[21] M.K.Kuimova, D.C.Grills, P.Matousek, A.W.Parker, X-.Z.
Sun, M.Towrie, M.W.George, Vib. Spectrosc. 2004, 35, 219.
[22] K.Wang, L.Huang, L.Gao, L.Jin, C.Huang, Inorg. Chem. 2002,
41, 3353.
[23] The electronic spectra are complicated for these systems, with
many chromophores in the visible region, thus the Stokes shift
calculated are phenomenological.
Figure 3. HOMO and LUMO energy levels of 6 superimposed onto a
theoretical device containing N,N’-diphenyl-N,N’-bis(3-methylphenyl)-
1,1’-biphenyl-4,4’-diamine (TPD), poly(N-vinylcarbazole) (PVK), and
tris(8-hydroxyquinoline)aluminum (Alq3). ITO=indium tin oxide.
[24] These data pertain to solution-phase spectra, and some of the
reorganization energy that leads to the Stokes shift will be
reduced in the film phase because reorganization of the solvent
cage will not be present.Thus, the band gaps will be smaller than
estimated by our method.To obtain more accurate estimates of
the band gaps is a topic of current investigation.
PVK and emission should then occur from the relaxation of
excitons localized on 6.Theoretically, 6 looks to be a
promising candidate as an OLED dopant as the small band
gap should allow efficient charge transport.However, the
small band gap of 6 may also cause inefficient conversion of
excitons into radiation, as is reflected in the low quantum
yield (Table 1).Nonetheless, the modular nature of complex 6
means that the individual components can be readily deriv-
atized prior to assembly of the trifunctional molecule, thus
allowing the electronic properties of the multifunctional
compound to be tuned.We are currently engaged in studies
[25] Y.Li, Y.Cao, J.Gao, D.Wang, G.Yu, A.J.Heeger,
1999, 99, 243.
Synth. Met.
[26] J.Fees, M.Ketterle, A.Klein, J.Fiedler, W.Kaim,
Dalton Trans. 1999, 2595.
J. Chem. Soc.
[27] G.David, P.J.Walsh, K.C.Gordon, Chem. Phys. Lett. 2004, 383,
292.
2584
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 2582 –2584