We thank the National Science Council of the Republic of
China (NSC-93-2113-M-007-033) for the support of this research.
Jen-Chieh Hsieh and Chien-Hong Cheng*
Department of Chemistry, National Tsing Hua University, Hsinchu,
30013, Taiwan. E-mail: chcheng@mx.nthu.edu.tw;
Fax: +886-3-5724698; Tel: +886-3-5721454
Scheme 4
Notes and references
1 Reviews: (a) N. E. Schore, Chem. Rev., 1988, 88, 1081; (b) B. M. Trost,
Science, 1991, 254, 1471; (c) K. P. C. Vollhardt, Angew. Chem., Int. Ed.
Engl., 1984, 23, 539; (d) M. Lautens, W. Klute and W. Tam, Chem.
Rev., 1996, 96, 49; (e) S. Saito and Y. Yamamoto, Chem. Rev., 2000,
100, 2901; (f) Y. Yamamoto, T. Saigoku, T. Ohgai, H. Nishiyama and
K. Itoh, Chem. Commun., 2004, 2702.
2 D. Pena, S. Escudero, D. Perez, E. Guitian and L. Castedo, Angew.
Chem., Int. Ed., 1998, 37, 2659.
Scheme 5
3 (a) D. Pena, D. Perez, E. Guitian and L. Castedo, J. Am. Chem. Soc.,
1999, 121, 5827; (b) D. Pena, D. Perez, E. Guitian and L. Castedo,
J. Org. Chem., 2000, 65, 6944; (c) K. V. Radhakrishan, E. Yoshikawa
and Y. Yamamoto, Tetrahedron Lett., 1999, 40, 7533.
4 (a) N. Mori, S. Ikeda and Y. Sato, J. Am. Chem. Soc., 1999, 121, 2722;
(b) S. Ikeda, H. Kondo, T. Arii and K. Odasima, Chem. Commun.,
2002, 2422; (c) S. Ikeda, N. Mori and Y. Sato, J. Am. Chem. Soc., 1997,
119, 4779; (d) S. Ikeda, H. Kondo and N. Mori, Chem. Commun., 2000,
815.
5 (a) T. Sambaiah, L.-P. Li, D.-J. Huang, C.-H. Lin, D. K. Rayabarapu
and C.-H. Cheng, J. Org. Chem., 1999, 64, 3663; (b) T. Sambaiah,
D.-J. Huang and C.-H. Cheng, J. Chem. Soc., Perkin Trans. 1, 2000,
195; (c) D.-J. Huang, D. K. Rayabarapu, L.-P. Li and C.-H. Cheng,
Chem. Eur. J., 2000, 6, 3706.
6 (a) J.-C. Hsieh, D. K. Rayabarapu and C.-H. Cheng, Chem. Commun.,
2004, 532; (b) M.-S. Wu, M. Shanmugasundaram and C.-H. Cheng,
Chem. Commun., 2003, 718; (c) A. Jeevananandam, R. P. Korivi,
I.-W. Huang and C.-H. Cheng, Org. Lett., 2002, 4, 807.
7 C. R. Mccurdy, B. Le Bourdonnec, T. G. Metzger, R. E. Kouhen,
Y. Zhang, P. Y. Law and P. S. Portoghese, J. Med. Chem., 2002, 45,
2887.
bond of
5
gives
a
nickelacycloheptatriene intermediate 6.
Subsequent reductive elimination of 6 affords product 3 and
regenerates the Ni(0) catalyst. This mechanism appears likely in
view of the formation of diyne dimer 7 and trimer 89 (Scheme 4) in
the reaction that can only be formed from intermediate 5.
An alternative mechanism (Scheme 5) involves the coordination
of a triple bond of diyne 2 and a benzyne to the nickel center to
produce a five-membered nickelacyclopentadiene intermediate 9.
An intramolecular insertion of the C–C triple bond into the
adjacent Ni(II)–carbon bond yields intermediate 6. Further
reductive elimination affords the final product 3. This pathway
also explains very well the formation of product 3, but fails to
account for the formation of diyne dimer and trimer in the
reaction.
In conclusion, we have developed a new methodology for the
[2 + 2 + 2] cocyclotrimerization of arynes with diyne catalyzed by
nickel complexes. This is the first report that a diyne can undergo
cycloaddition with a benzyne with excellent tolerance of functional
groups and fused-ring sizes to furnish naphthalene derivatives in
moderate to good yields. Further studies to determine the exact
mechanistic pathway for this useful reaction are currently under
way.
8 M. D. Watson, A. Fechtenkotter and K. Mullen, Chem. Rev., 2001, 101,
1267.
9 (a) R. Eva, S. Roland, K. Karl and C. Maria Jose, J. Organomet.
Chem., 2003, 682, 204; (b) B. Chiara, P. Loris, P. Paolo, C. Anna Maria
and V. Giovanni, J. Organomet. Chem., 2000, 607, 57.
10 (a) J. J. Eisch and J. E. Galle, J. Organomet. Chem., 1975, 96, C23; (b)
D. R. McAlister, J. E. Bercaw and R. G. Bergman, J. Am. Chem. Soc.,
1977, 99, 1666.
This journal is ß The Royal Society of Chemistry 2005
Chem. Commun., 2005, 2459–2461 | 2461