C O M M U N I C A T I O N S
high diastereoselectivity. Although the enantioselectivities of those
reactions are moderate at this point (Scheme 2), the ability of
methoxide to improve enantioselectivity is general. Future studies
will further our mechanistic understanding so that we can improve
the enantioselectivity under catalytic conditions and increase the
range of nucleophiles that add to prochiral cyclopropenes with
excellent enantioselectivity.
Figure 1. Complementary enantioselective syntheses of cyclopropanes.
Acknowledgment. This work was supported by NIH Grant
GM068640-01A1 and by P20 RR017716-01 from the NIH COBRE
Program of the NCRR.
Supporting Information Available: Full experimental and char-
acterization details and 1H and 13C NMR spectra; X-ray data for
stereochemical assignments. This material is available free of charge
Figure 2. Nonlinear dependence of product ee on ligand ee.
References
(1) (a) Posner, G. H. Chem. ReV. 1986, 86, 831. (b) Marko, I. E.; Mekhalfia,
A.; Murphy, F.; Bayston, D. J.; Bailey, M.; Janousek, Z.; Dolan, S. Pure
Appl. Chem. 1997, 69, 565.
Scheme 2. Enhancement of Enantioselectivity by MeOH Is
General
(2) (a) Liao, L.-a.; Fox, J. M. J. Am. Chem. Soc. 2002, 124, 14322. (b) Liao,
L.-a.; Zhang, F.; Dmitrenko, O.; Bach, R. D.; Fox, J. M. J. Am. Chem.
Soc. 2004, 126, 4490. (c) Liao, L.-a.; Zhang, F.; Yan, N.; Golen, J.; Fox,
J. M. Tetrahedron 2004, 60, 1803. (d) Pallerla, M. K.; Fox, J. M. Org.
Lett. 2005, 7, 3593.
(3) Preparations of 1 were based on footnote 9a and references therein.
(4) Welch, J. G.; Magid, R. M. J. Am. Chem. Soc. 1967, 89, 5300.
(5) (a) Fox, J. M.; Yan, N. Curr. Org. Chem. 2004, 9, 719. (b) Halton, B.;
Banwell. M. G. In The Chemistry of the Cyclopropyl Group; Patai, S.,
Rappoport, Z., Eds.; Wiley: Chichester, 1987; p 1224. (c) Baird, M. S.
Top. Curr. Chem. 1988, 144, 139. (d) Baird, M. S.; Schmidt, T. In
Carbocyclic Three-Membered Ring Compounds; de Meijere, Ed.; Georg
Thieme Verlag: Stuttgart, 1996; p 114.
tion of electrophiles creates all three stereocenters in high enantio-
selectivity for diverse types of tetrasubstituted cyclopropenes as
shown in Table 1. Interestingly, we observed that the enantio-
selectivities differed slightly (and usually advantageously) when
electrophiles other than proton are used to quench the reaction. We
attribute this to slight kinetic differences in reactivity between the
electrophiles toward the diasteromeric cyclopropylmetal/ligand
adducts.14 Also significant is that the reactions in Table 1 proceed
with excellent diastereoselectivity that is complementary to the
Davies enantioselective cyclopropanation15 (Figure 1). The practical
nature of the method is underscored by the straightforward synthesis
of the cyclopropene starting materials and the use of an inexpensive
chiral ligand [(S)-N-methylprolinol]. (R)-N-Methylprolinol is readily
prepared in one step. Furthermore, the N-methylprolinol can be
recovered in high yield (91%) at the completion of the reaction.
High enantioselectivities for the carbometalation reaction are
obtained when the deprotonated ligand and MeMgCl are used in a
1:1 ratio (as measured after deprotonations) and in 3-fold excess.
Reactions with smaller excess of the ligand/Grignard complex give
products of lower ee. Thus, the reaction proceeds in only 79% ee
when the ligand and Grignard reagent are in 2-fold excess, and
further decreases to 45% ee when the ratio of deprotonated ligand/
MeMgCl/substrate is 1.2:1.2:1. Furthermore, there is a negative
nonlinear dependence16 of ligand ee on the ee of 2, as shown in
Figure 2. Taken together, these observations imply the involvement
of at least two chiral ligands in the enantioselectivity-determining
step. It is plausible that separate ligand-metal complexes serve
both as the nucleophilic delivery agent and as a Lewis acid activator
for the cyclopropene.
(6) Reviews of enantioselective alkene carbometalation: (a) Marek, I. J. Chem.
Soc., Perkin Trans. 1 1999, 535. (b) Hoveyda, A. H.; Morken, J. P. Angew.
Chem., Int. Ed. Engl. 1996, 35, 1263.
(7) Nakamura, M.; Isobe, H.; Nakamura, E. Chem. ReV. 2003, 103, 1295.
(8) Lead references to enantioselective cyclopropenation: (a) Doyle, M. P.;
Protopopova, M.; Mu¨ller, P.; Ene, D.; Shapiro, E. A. J. Am. Chem. Soc.
1994, 116, 8492. (b) Doyle, M. P.; Ene, D. G.; Peterson, C. S.; Lynch, V.
Angew. Chem., Int. Ed. 1999, 38, 700. (c) Mu¨ller, P; Imoga¨ı, H.
Tetrahedron: Asymmetry 1998, 9, 4419. (d) Davies, H. M. L.; Lee, G.
H. Org. Lett. 2004, 6, 1233. (e) Lou, Y.; Horikawa, M.; Kloster, R. A.;
Hawryluk, N. A.; Corey, E. J. J. Am. Chem. Soc. 2004, 126, 8916.
(9) (a) Rubina, M.; Rubin, M.; Gevorgyan, V. J. Am. Chem. Soc. 2002, 124,
11566. (b) Rubina, M.; Rubin, M.; Gevorgyan, V. J. Am. Chem. Soc.
2003, 125, 7198. (c) Rubina, M.; Rubin, M.; Gevorgyan, V. J. Am. Chem.
Soc. 2004, 126, 3688.
(10) Wong, H. N. C.; Hon, M.-Y.; Tse, C.-W.; Yip, Y.-C.; Tanko, J.; Hudlicky,
T. Chem. ReV. 1989, 89, 165.
(11) Lead references to the synthesis of nonracemic cyclopropanes: (a) Davies,
H. M. L.; Antoulinakis, E. G. Org. React. 2001, 57, 8. (b) Doyle, M. P.;
Forbes, D. C. Chem. ReV. 1998, 98, 911. (c) Charette, A.; Beauchemin,
A. Org. React. 2001, 58, 33. (d) Methoden der Organischen Chemie
(Houben Weyl); de Meijere, Ed.; Georg Thieme Verlag: Stuttgart, 1996;
Vol E17a.
(12) Cu-catalysis is needed for 1-alkyl-3-hydroxymethylcyclopropenes,2a but
not for 1a. The likely explanation for the lower reactivity of the former
(without Cu) is that alkyl substitution considerably increases the strength
of the cyclopropene CdC bond. See ref 5a.
(13) (a) Walling, C.; Buckler, S. A. J. Am. Chem. Soc. 1955, 77, 6032. For
examples of alkoxide-promoted enantioselective reactions of dialkylzinc
and organolithium reagents, see: (b) Vogl, E. M.; Gro¨ger, G.; Shibasaki,
M. Angew. Chem., Int. Ed. 1999, 38, 1570. (c) Funabashi, K.; Jackmann,
M.; Kanai, M.; Shibasaki, M. Angew. Chem. Int. Ed. 2003, 42, 5489. (d)
Dosa, P. I.; Fu, G. C. J. Am. Chem. Soc. 1998, 120, 445. (e) Trost, B. M.;
Pissot-Soldermann, C.; Chen, I.; Schroeder, G. M. J. Am. Chem. Soc.
2004, 126, 4480.
(14) The adduct from 3-hydroxymethyl-3-phenylcyclopropene gave the lactol
in 98% ee after DMF quench (Table 1). Also observed was <10% of 2
in 50% ee. The low ee for 2 is consistent with enantiomeric enrichment
via kinetic resolution.
(15) Nowlan, D. T., III; Gregg, T. M.; Davies, H. M. L.; Singleton, D. A. J.
Am. Chem. Soc. 2003, 125, 15902.
(16) Blackmond, D. G. Acc. Chem. Res. 2000, 33, 402.
While the studies reported here focus on the additions of
MeMgCl to cyclopropenes, other Grignard reagents also add with
JA058101Q
9
J. AM. CHEM. SOC. VOL. 128, NO. 17, 2006 5601