stereogenic centers, four of which are successive, as well as
a quaternary stereogenic center at the trans-fused BC-ring
juncture.
Total synthesis of (+)-ophiobolin A has not been achieved
nor have synthetic studies on the spirocyclic CD-ring moiety
been reported.5,6 Recent studies on its potent bioactivity4 as
well as on its complex structural features led us to commence
synthetic studies on (+)-ophiobolin A.
this reaction8 would simultaneously construct the 1-oxaspiro-
[4.4]nonane framework as well as the two requisite stereo-
genic centers at C10 and C14. Because this cyclization
proceeds via an oxonium ion, the allylsilane was expected
to react at the C14 position from the less-hindered side to
afford 1a as a major product. A coupling reaction of
fragments A and B would provide 2. Consequently, we first
prepared these two fragments.
We selected pig liver esterase (PLE)-mediated asymmetric
hydrolysis of 3 to prepare 4 for the synthesis of fragment A
(Scheme 2) because fragment A possesses a quaternary
We envisioned that (+)-ophiobolin A could be synthesized
from the CD-ring moiety 1a and fragment C, which we
expected to derive from the chiral building block we had
reported earlier.7 Consequently, we first examined the
synthesis of 1a and report herein the asymmetric synthesis
of the spirocyclic CD-ring moiety of (+)-ophiobolin A.
As outlined in Scheme 1, we selected a Lewis acid
promoted cyclization reaction of 2 to construct 1a because
Scheme 2. Kinetic Resolution of 4 with PLE
(2) (a) Sugawara, F.; Strobel, G.; Strange, R. N.; Siedow, J. N.; Duyne,
G. D. V.; Clardy, J. Proc. Natl. Acad. Sci. 1987, 84, 3081-3085. (b)
Sugawara, F.; Takahashi, N.; Strobel, G.; Yun, C.; Gray, G.; Fu, Y.; Clardy,
J. J. Org. Chem. 1988, 53, 2170-2172.
(3) (a) Singh, S. B.; Smith, J. L.; Sabnis, G. S.; Dombrowski, A. W.;
Schaeffer, J. M.; Goetz, M. A.; Bills, G. F. Tetrahedron 1991, 47, 6931-
6938. (b) Li, E.; Clark, A. M.; Rotella, D. P.; Hufford, C. D. J. Nat. Prod.
1995, 58, 74-81. (c) Tsipouras, A.; Adefarati, A. A.; Tkacz, J. S.; Frazier,
E. G.; Rohrer, S. P.; Birzin, E.; Rosegay, A.; Zink, D. L.; Geotz, M. A.;
Singh, S. B.; Schaeffer, J. M. Bioorg. Med. Chem. 1996, 4, 531-536. (d)
Wei, H.; Itoh, T.; Kinoshita, M.; Nakai, Y.; Kurotaki, M.; Kobayashi, M.
Tetrahedron 2004, 60, 6015-6019.
(4) (a) Au, T. K.; Chick, Wallace S. H.; Leung, P. C. Life Sci. 2000, 67,
733-742. (b) Fujiwara, H.; Matsunaga, K.; Kumagai, H.; Ishizuka, M.;
Ohizumi, Y. Pharm. Pharmacol. Commun. 2000, 6, 427-431. (c) Leung,
P. C.; Taylor, W. A.; Wang, J. H.; Tipton, C. L. J. Biol. Chem. 1984, 259,
2742-2747. (d) Shen, X.; Krasnoff, S. B.; Lu, S.-W.; Dunbar, C. D.;
O’Neal, J.; Turgeon, B. G.; Yoder, O. C.; Gibson, D. M.; Hamann, M. T.
J. Nat. Prod. 1999, 62, 895-897.
(5) Several research groups reported synthetic studies on ophiobolins.
See: (a) Dauben, W. G.; Hart, D. J. J. Org. Chem. 1977, 42, 922-923. (b)
Das, T. K.; Dutta, P. C.; Kartha, G.; Bernassau, J. M. J. Chem. Soc., Perkin
Trans. 1 1977, 1287-95. (c) Boeckman, R. K., Jr.; Bershas, J. P.; Clardy,
J.; Solheim, B. J. Org. Chem. 1977, 42, 3630-3633. (d) Paquette, L. A.;
Andrews, D. R.; Springer, J. P. J. Org. Chem. 1983, 48, 1147-1149. (e)
Paquette, L. A.; Colapret, J. A.; Andrews, D. R. J. Org. Chem. 1985, 50,
201-205. (f) Coates, R. M.; Muskopf, J. W.; Senter, P. A. J. Org. Chem.
1985, 50, 3541-3557. (g) Mehta, G.; Krishnamurthy, N. J. Chem. Soc.,
Chem. Commun. 1986, 1319-1321. (h) Umehara, M.; Hishida, S.; Okumoto,
S.; Ohba, S.; Ito, M.; Saito, Y. Bull. Chem. Soc. Jpn. 1987, 60, 4474-
4476. (i) Rigby, J. H.; Senanayake, C. J. Org. Chem. 1987, 52, 4634-
4635. (j) Rowley, M.; Kishi, Y. Tetrahedron Lett. 1988, 29, 4909-4912.
(k) Dauben, W. G.; Warshawsky, A. M. J. Org. Chem. 1990, 55, 3075-
3087. (l) Paquette, L. A.; Liang, S.; Galatsis, P. Synlett 1990, 663-665.
(m) Snider, B. B.; Yang, K. J. Org. Chem. 1992, 57, 3615-3626. (n) Rigby,
J. H.; McGuire, T.; Senanayake, C.; Khemani, K. J. Chem. Soc., Perkin
Trans.1 1994, 3449-3457. (o) Paquette, L. A.; Liang, S.; Wang, H.-L. J.
Org. Chem. 1996, 61, 3268-3279. (p) Blake, A. J.; Highton, A. J.; Majid,
T. N.; Simpkins, N. S. Org. Lett. 1999, 1, 1787-1789. (q) McGee, K. F.,
Jr.; Al-Tel, T. H.; Sieburth, S. M. Synthesis 2001, 1185-1196. (r) Ruprah,
P. K.; Cros, J.-P.; Pease, J. E.; Whittingham, W. G.; Williams, J. M. J.
Eur. J. Org. Chem. 2002, 3145-3152. (s) Salem, B.; Suffert, J. Angew.
Chem., Int. Ed. 2004, 43, 2826-2830.
stereogenic center, which could not be derived from a
commercially available compound. PLE-mediated asym-
metric hydrolysis of 3 in 0.01 M KPB8 (pH 8, potassium
phosphate buffer) successfully generated 4 with 96% ee via
kinetic resolution. Specifically, monoester 4, prepared with
89% ee via PLE-mediated asymmetric hydrolysis in the
initial 9 h reaction, was again treated with PLE, and after a
week, 4 was recovered in 88% yield. HPLC analysis of the
corresponding anilide revealed that the ee of 4 was increased
from 89 to 96% ee.9
The synthesis of fragment A began with the conversion
of chiral starting material 4 to the corresponding acid chloride
(Scheme 3), which was then reduced with NaBH4 to afford
5 (86%).10 Alcohol 5 was protected as a MOM ether,
followed by reduction with LiAlH4 (99%) to produce 6,
which was acetylated and subjected to ozonolysis followed
by reductive workup affording 7 (100%). Protection of 7 as
an ethoxyethyl ether, removal of the acetyl group, and Swern
oxidation gave aldehyde 8 (84%). Horner-Wadsworth-
Emmons reaction of 8, followed by DIBAL-H reduction, and
treatment of the resulting allylic alcohol with lithium chloride
and methanesulfonyl chloride11 afforded 9 (97%). Still’s
protocol successfully introduced the allyltrimethylsilane,12
and the following removal of the ethoxyethyl group and
subsequent conversion furnished fragment A (81%).
(6) For the total synthesis of ophiobolin C, see: (a) Rowley, M.;
Tsukamoto, M.; Kishi, Y. J. Am. Chem. Soc. 1989, 111, 2735-2737. For
the total synthesis of (+)-albolic acid and (+)-ceroplastol II, see: (b) Kato,
N.; Kataoka, H.; Ohbuchi, S.; Tanaka, S.; Takeshita, H. J. Chem. Soc.,
Chem. Commun. 1988, 354-356. (c) Kato, N.; Takeshita, H.; Kataoka, H.;
Ohbuchi, S.; Tanaka, S. J. Chem. Soc., Perkin Trans. 1 1989, 165-174.
For the total synthesis of (()-ceroplastol I, see: (d) Boeckman, R. K., Jr.;
Arvanitis, A.; Voss, M. E. J. Am. Chem. Soc. 1989, 111, 2737-2739. For
the total synthesis of (+)-ceroplastol I, see: (e) Paquette, L. A.; Wang, T.
Z.; Vo, N. H. J. Am. Chem. Soc. 1993, 115, 1676-1683.
(7) (a) Honma, M.; Sawada, T.; Fujisawa, Y.; Utsugi, M.; Watanabe,
H.; Umino, A.; Matsumura, T.; Hagihara, T.; Takano, M.; Nakada, M. J.
Am. Chem. Soc. 2003, 125, 2860-2861. (b) Takano, M.; Umino, A.;
Nakada, M. Org. Lett. 2004, 6, 4897-4900. (c) Miyamoto, H.; Iwamoto,
M.; Nakada, M. Heterocycles 2005, 66, 61-68.
(8) For oxonium ion mediated cyclizations using dihydropyrans, see:
Paquette, L. A.; Tae, J. J. Org. Chem. 1996, 61, 7860-7866. For a recent
review of allylsilane chemistry, see: (a) Fleming, I.; Barbero, A.; Walter,
W. Chem. ReV. 1997, 97, 2063-2192. (b) Hosomi, A.; Miura, K. Bull.
Chem. Soc. Jpn. 2004, 77, 835-851. (c) Chabaud, L.; James, P.; Landais,
Y. Eur. J. Org. Chem. 2004, 3173-3199.
(9) To the best of our knowledge, this kinetic resolution of monoester
has never been reported. For details, see Supporting Information.
(10) Soai, K.; Yokoyama, S.; Mochida, K. Synthesis 1987, 647-648.
(11) Meyers, A. I.; Collington, E. W. J. Org. Chem. 1971, 36, 3044-
3045.
(12) (a) Still, W. C. J. Org. Chem. 1976, 41, 3063-3064. (b) Smith, J.
G.; Drozda, S. E.; Petraglia, S. P.; Quinn, N. R.; Rice, E. M.; Taylor, B.
S.; Viswanathan, M. J. Org. Chem. 1984, 49, 4112-4120.
2040
Org. Lett., Vol. 8, No. 10, 2006