xS.G. Ku¨c¸u¨kgu¨zel et al. / European Journal of Medicinal Chemistry 42 (2007) 893e901
897
Table 2
1H NMR spectral data of 4aeg, 5aeg, 6aeg
Compound
1H NMR
4a
4b
4c
3.25 (s, 3H, NeCH3); 6.75e7.52 (m, 6H, AreH); 9.88, 10.61 (2s, 1H, AreOH); 13.78 (2s, 1H, NH).
0.99 (t, 3H, NeCH2eCH3); 3.78 (q, 2H, NeCH2eCH3); 7.01e7.51 (m, 6H, AreH); 10.29e10.77 (br, 1H, AreOH); 13.54 (s, 1H, NH).
4.47 (d, 2H, NeCH2eCH]); 4.65 (d, 1H, eCH]CH2, J ¼ 17.2 Hz, trans); 4.88 (d, 1H, eCH]CH2, J ¼ 10.3 Hz, cis); 5.49e5.68 (m, 1H,
eCH]CH2), 6.99e7.49 (m, 6H, AreH); 10.56 (s, 1H, AreOH); 13.84 (s, 1H, NH).
4d
4e
4f
6.89e8.12 (m, 11H, AreH); 10.30 (s, 1H, AreOH); 11.07 (s, 1H, NH).
2.29 (s, 3H, AreCH3); 6.83e7.46 (m, 10H, AreH); 9.48e11.35 (br, 1H, AreOH); 12.93e14.89 (br, 1H, NH).
3.63 (s, 3H, OCH3); 6.73e7.40 (m, 10H, AreH); 9.97 (s, 1H, AreOH); 13.66 (s, 1H, NH).
4g
5a
5b
5c
0.80e1.66 (m, 10H, cyclohexyl CH2); 2.06 (s, 1H, NeCHecyclohexyl); 6.97e7.45 (m, 6H, AreH); 10.43 (s, 1H, AreOH); 13.71 (s, 1H, NH).
2.89 (s, 3H, NeCH3); 6.97e8.00 (m, 7H, AreH and NHeCH3); 11.10 (s, 1H, AreOH).
1.17 (t, 3H, NeCH2eCH3); 3.31 (q, 2H, NeCH2eCH3); 7.02e7.98 (m, 7H, AreH and NHe CH2eCH3), 11.10 (s, 1H, AreOH).
3.97 (d, 2H, NeCH2eCH]); 5.07 (d, 1H, eCH]CH2, J ¼ 17.0 Hz, trans); 5.25 (d, 1H, eCH]CH2, J ¼ 10.2 Hz, cis); 5.75e5.94 (m, 1H,
eCH]CH2), 7.01e8.34 (m, 7H, AreH and NHeAr); 11.09, 12.02 (2 s, 1H, AreOH).
5d
5e
5f
6.97e8.18 (m, 11H, AreH); 9.85 (s, 1H, NHeC6H5); 12.00 (s, 1H, AreOH).
2.47 (s, 3H, AreCH3); 7.08e8.17 (m, 11H, AreH); 10.26 (s, 1H, NHeC6H4eCH3); 11.15 (s, 1H, AreOH).
3.72 (s, 3H, OCH3); 6.91e8.14 (m, 11H, AreH); 10.15 (s, 1H, AreOH).
5g
6a
6b
6c
1.14e1.99 (m, 10H, cyclohexyl CH2); 2.24 (s, 1H, NeCHecyclohexyl); 7.11e7.78 (m, 6H, AreH); 11.12 (s, 1H, NH cyclohexyl);
2.49 (s, 3H, NeCH3); 7.10e7.78 (m, 7H, AreH and NHeCH3).
1.16 (t, 3H, NeCH2eCH3); 3.25 (q, 2H, NeCH2eCH3); 7.10e7.90 (m, 7H, AreH and NHeCH2eCH3).
3.86 (d, 2H, NeCH2eCH]); 5.12 (d, 1H, eCH]CH2, J ¼ 17.3 Hz, trans); 5.21 (d, 1H, eCH]CH2, J ¼ 10.4 Hz, cis); 5.84e5.96 (m, 1H,
eCH]CH2), 7.05e8.13 (m, 7H, AreH and NH); 10.28 (s, 1H, AreOH).
6d
6e
6f
a6g
a
6.97e7.79 (m, 11H, AreH); 10.41 (s, 1H, NHeC6H5); 10.73 (s, 1H, AreOH).
2.23 (s, 3H, AreCH3); 7.05e7.78 (m, 10H, AreH); 10.38 (s, 1H, NHeC6H4eCH3); 10.61 (s, 1H, AreOH).
3.63 (s, 3H, OCH3); 6.91e7.76 (m, 10H, AreH); 10.37 (s, 1H, NHeC6H4eOCH3); 10.51 (s, 1H, AreOH).
1.15e1.93 (m, 10H, cyclohexyl CH2); 2.24 (s, 1H, NeCHecyclohexyl); 7.10e7.88 (m, 6H, AreH); 10.33 (s, 1H, NH cyclohexyl).
Ref. [12].
of a drug. According to the above criterions, calculated percent-
ages of absorption for compounds 4aeg, 5aegand 6aeg ranged
between 81 and 90%.
heterocyclic classes (4c, 5c and 6a) with allyl or methyl substit-
uent at R position had zero violations to Lipinski rule of five.
According to these results, it has been understood that het-
erocyclic derivatives of diflunisal exhibited higher anti-inflam-
matory activity than diflunisal and compound 5f presented
similar antinociceptive activity.
In conclusion, a functional group transformation in a well-
known anti-inflammatory drug diflunisal was performed to
observe whether replacement of carboxylic acid function with
several heterocyclic rings (1,2,4-triazole; 1,3,4-thiadiazole and
1,3,4-oxadiazole) leads to an increase in biological activity, or
a different pharmacological profile. There were no direct corre-
lations observed between simple molecular properties such as
log P and anti-inflammatory or antinociceptive activity. Never-
theless, it was notable that three most active derivatives in each
4. Experimental
All chemical compounds were purchased from Fluka.
Diflunisal was provided by Sanovel Pharmaceuticals. Melting
points were taken on Buchi-530 apparatus and are uncorrected.
Table 3
Antimicrobial activities of new synthesized compounds against the bacterial strains tested based on disc diffusion method and microwell dilution method
Microorganisms e Code (Source)a
4a
4b
4c
4f
4g
5d
Antibioticsb
DDc
DD MIC DD MIC DD MIC
DD MIC
DD MIC DD MIC
MICd (max)
Enterococcus faecalis e ATCC-29122 (1)
Escherichia coli e A1 (1)
Proteus vulgaris e A161 (1)
Proteus vulgaris e KUKEM1329 (1)
Streptococcus pyogenes e ATCC-176 (1)
S. pyogenes e KUKEM-676 (1)
e
e
10
8
e
e
e
9
e
10
12
10
9
250
62.50
12
e
125
e
e
e
e
e
31.25
18 (SCF)
e(OFX)
31.25
62.50
e
e
e
e
16
14
16
18
e
125
125
e
125
125
e
125
250
e
10
e
125
10
12
e
125
125
e
62.50 12 (OFX) 125
62.50 13 (OFX) 125
9
e
e
e
e
12
14
62.25 10
62.25
62.25
125
31.25 10 (OFX)
e 13 (OFX)
62.50
31.25
e
e
9
e
e
Bacteria: Acinetobacter baumanii A8 (1), Acinetobacter lwoffi F1 (3), Bacillus macerans A199 (1), Bacillus megaterium A59 (2), Bacillus subtilis ATCC 6633 (1),
B. subtilis A57 (1), Brucella abortus A77 (1), Burkholdria cepacia A225 (2), Clavibacter michiganens A227 (2), Cedecea davisae F2 (3), Enterobacter cloacae
A135 (2), Klebsiella pneumoniae F3 (3), K. pneumoniae A137 (2), Morganella morganii F4 (3), Pseudomonas aeruginosa ATCC9027 (1), P. aeruginosa
ATCC27859 (1), P. aeruginosa F5 (3), Pseudomonas pseudoalkaligenes F6 (3), Pseudomonas syringae pv. tomato A35 (2), Salmonella cholerasuis arizonae
F7 (3), Salmonella enteritidis ATCC13076 (1), Serratia plymuthica F8 (3), Shigella sonnei F9 (3), Staphylococcus aureus A215 (1), S. aureus ATCC 29213
(1), Staphylococcus epidermis A233 (1), Staphylococcus hominis F10 (3), Xanthomonas campestris A235 (2), Yersinia enterocolitica F11 (3).
a
Source of microorganisms: 1 ¼ Clinic human pathogenic organism, 2 ¼ Plant pathogenic, 3 ¼ Food pathogenic.
b
OFX ¼ Ofloxacin (10 mg/disc); SCF ¼ sulbactam (30 mg) þ cefoperazona (75 mg) (105 mg/disc) and NET ¼ Netilmicin (30 mg/disc), were used as positive ref-
erence standards antibiotic discs (Oxoid); Maxipime (mg/mL) was used as reference antibiotic in microwell dilution assay (Sigma).
c
Inhibition zone in diameter (mm) around the discs impregnated with 10 mL of the synthesized compounds.
Minimal inhibitory concentrations as mg/mL.
d