H. Mecadon et al. / Tetrahedron Letters 52 (2011) 2523–2525
2525
R1
R1
O
CN
CN
N
Al2O3
Al2O3
N
O
NH2
+
+
+
HN
+
HN
NH2.H2O
H
Step-B
O
O
Step-A
NC CN
O
O
1
2
3
4
6
7
Al
8a
Step-C
R1
R1
O
R1
H
CN
CN
CN
NH2
CN
CN
N
N
HN
N
HN
HN
H
Step-F
Step-E
Step-D
N
N
H
O
O
O
5
9
Al
8c
Al
8b
Step-F = 1. cyclization, 2. tautomerization.
Scheme 2. Proposed mechanism for the formation of pyrano[2,3-c]pyrazoles.
7. Gogoi, S.; Zhao, C.-G. Tetrahedron Lett. 2009, 50, 2252.
c
-alumina, basic alumina and KF-alumina with the c-alumina
8. (a) Sánchez-Valente, J.; Hernández-Beltrán, F.; Guzmán-Castillo, M. L.; Fripiat, J.
J.; Bokhimi, X. J. Mater. Res. 2004, 19, 1499; (b) Keshavarz, A. R.; Rezaei, M.;
Yaripour, F. Power Tech. 2010, 199, 176; (c) Ionescu, A.; Allouche, A.; Jean-
Pierre, A. J. Phys. Chem. B 2002, 106, 9359; (d) Maggi, R.; Ballini, R.; Giovanni, S.;
Raffaella, S. Tetrahedron Lett. 2004, 45, 2297; (e) Blass, B. E. Tetrahedron 2002,
58, 9301. and the references cited therein..
displaying greater catalytic activity has also been shown. More
importantly, the present procedure offers mild, efficient and envi-
ronmentally benign strategy by the use of c-alumina which over-
comes the drawbacks of the reported methods.
9. (a) Mizar, P.; Myrboh, B. Tetrahedron Lett. 2008, 49, 5283; (b) Mizar, P.; Myrboh,
B. Tetrahedron Lett. 2009, 50, 3088; (c) Rohman, M. R.; Myrboh, B. Tetrahedron
Lett. 2010, 51, 4772.
Acknowledgments
10. Hasni, M.; Prado, G.; Rouchaud, J.; Grange, P.; Devillers, M.; Delsarte, S. J. Mol.
Catal. A 2006, 247, 116.
11. Kanagaraj, K.; Pitchumani, K. Tetrahedron Lett. 2010, 51, 3312.
12. General experimental procedure for the synthesis of 6-amino-4-alkyl/aryl-3-
H.M. thanks the UGC-India for the research fellowship under
the RGNF scheme. The authors thank the SAIF North-Eastern Hill
University for the spectral analyses.
methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles (5): To
a pre-stirred
mixture of ethyl acetoacetate (1) (0.26 mL, 2.0 mmol) hydrazine hydrate (2)
(0.13 mL, 2.5 mmol) in water (10 mL) was added aldehydes (3) (2.0 mmol) and
Supplementary data
malononitrile (4) (0.13 g, 2.0 mmol) followed by pre-calcinated
c-alumina
(30 mol %). The reaction mixture was then heated at 100 °C and allowed to stir
for 35–90 min. On completion of the reaction (monitored by TLC), it was cooled
and water was evaporated in vacuo. The residue was treated with boiling
Supplementary data (spectroscopic analytical data, 1H, 13C NMR
and mass spectra) associated with this article can be found, in the
methanol–ethyl acetate (1:1) and filtered through
a sintered funnel and
washed thoroughly with the same solvent. The combined filtrate was
evaporated in vacuo to afford the crude product which was recrystallized
from ethanol/water (9.5:0.5), or purified by column chromatography over silica
gel (100–200 mesh) using methanol/dichloromethane (2:8) as the eluent to
afford pure compound 5.
Same procedure was followed for the reactions when basic alumina and
KF-alumina (30 mol %) were used as catalysts during the comparative
study.
References and notes
1. (a) Eilbracht, P.; Bärfacker, L.; Buss, C.; Hollmann, C.; Kitsos-Rzychon, B. E.;
Kranemann, C. L.; Rische, T.; Roggenbuck, R.; Schimdt, A. Chem. Rev. 1999, 99,
3329; (b) Domling, A.; Ugi, I. Angew. Chem., Int. Ed. 2009, 39, 3168; (c) Kappe, C.
O. Acc. Chem. Res. 2000, 33, 879.
2. (a) Kuo, S. C.; Huang, L. J.; Nakamura, H. J. Med. Chem. 1984, 27, 539; (b) Wang, J.
L.; Liu, D.; Zheng, Z. J.; Shan, S.; Han, X.; Srinivasula, S. M.; Croce, C. M.; Alnemri,
E. S.; Huang, Z. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 7124; (c) Zaki, M. E. A.;
Soliman, H. A.; Hiekal, O. A.; Rashad, A. E. Z. Naturforsch., C 2006, 61, 1.
3. Foloppe, N.; Fisher, L. M.; Howes, R.; Potter, A.; Robertson, A. G. S.; Surgenor, A.
E. Bioorg. Med. Chem. 2006, 14, 4792.
4. (a) Stachulski, A. V.; Berry, N. G.; Lilian Low, A. C.; Moores, S. L.; Row, E.;
Warhurst, D. C.; Adagu, I. S.; Rossignol, J. F. J. Med. Chem. 2006, 49, 1450; (b)
Sun, W.; Cama, L. J.; Birzin, E. T.; Warrier, S.; Locco, L.; Mosely, R.; Hammond, M.
L.; Rohrer, S. P. Bioorg. Med. Chem. Lett. 2006, 16, 1468; (c) Elinson, M. N.;
Dorofeev, A. S.; Feducovich, S. K.; Gorbunov, S. V.; Nasybullin, R. F.; Stepanov, N.
O.; Nikishin, G. I. Tetrahedron Lett. 2006, 47, 7629.
13. Spectroscopic data for compound (5k): yellowish solid; IR mmax (KBr): 1076,
1169, 1348, 1407, 1527, 1600, 1653, 2196, 2932, 3118, 3217, 3469 cmÀ1 1H
;
NMR (400 MHz, (CD3)2CO): d (ppm) 1.92 (s, 3H, CH3), 4.79 (s, 1H, 4H), 6.20 (s,
2H, NH2), 7.55 (t, 1H, J = 8.0 Hz, Ar–H), 7.62 (d, 1H, J = 7.6 Hz, Ar–H), 8.00–8.03
(m, 2H, Ar–H), 11.34 (s, 1H, NH); 13C NMR (100 MHz, CDCl3 + DMSO-d6): d
(ppm) 9.70, 29.0, 56.5, 112.6, 120.2, 123.2, 128.4, 128.6, 135.7, 141.3, 146.3,
151.3, 154.6, 160.9; MS (ES+) calcd for C14H11N5O3 297.1 found m/z 297.9
(M+H)+, 319.9 (M+Na)+; CHN calcd for C14H11N5O3: C, 56.56; H, 3.73; N,
23.56%; found: C, 56.69; H, 3.69; N, 23.43% (Lit.).11 For compound (5s) yellow
solid; IR mmax (KBr): 1149, 1222, 1401, 1467, 1527, 1613, 2203, 2932,3120,
3190, 3390 cmÀ1 1H NMR (400 MHz, CDCl3 + DMSO-d6): d (ppm) 0.76–0.85
;
(m, 3H, CH3), 1.18–1.21 (m, 2H, CH2), 1.66–1.73 (m, 2H, CH2), 1.90 (s, 3H, CH3)
3.20–3.26 (m, 1H, 4H), 6.66 (s, 2H, NH2); 13C NMR (100 MHz, CDCl3 + DMSO-
d6): d (ppm) 9.8, 13.7, 19.8, 31.3, 36.5, 96.6, 112.8, 112.9, 139.5, 159.5, 171.5;
MS (ES+) calcd for C11H14N4O 218.1 found m/z 218.9 (M+H)+, 240.9 (M+Na)+;
CHN calcd for C11H14N4O: C, 60.53; H, 6.47; N, 25.67%; found: C, 60.41; H, 6.39;
N, 25.40%.
5. Junek, H.; Aigner, H. Chem. Ber. 1973, 106, 914.
6. (a) Sharanin Yu, A.; Sharanina, L. G.; Puzanova, V. V. Zh. Org. Khim. 1983, 19,
2609; (b) Sharanin, Y. A.; Sharanina, L. G.; Puzanova, V. V. J. Org. Chem. USSR
(Engl. Transl.) 1983, 221; (c) Peng, Y.; Song, G.; Dou, R. Green Chem. 2006, 8, 573;
(d) Vasuki, G.; Kumaravel, K. Tetrahedron Lett. 2008, 49, 5636.