C O M M U N I C A T I O N S
Table 2. Enantioselective Aminomethylation of Aldehydes
commercially available, and such building blocks are readily
prepared from the analogous R-amino acids.16 Our catalytic route
offers large-scale access to â2-amino acids, as well as to other chiral
molecules (R-substituted â-amino aldehydes, â-substituted γ-amino
alcohols) of potential value.
Acknowledgment. This research was supported by NIH Grant
GM56414 and NSF Grant CHE-0551920. NMR equipment pur-
chase was supported in part by grants from NIH and NSF, and
X-ray equipment by NSF. We thank Dr. Ilia Guzei for X-ray
structure analysis.
isolated
entry
R
yield (%)a
ee (%)b
1
2
3
4
5
Et
Pr
i-Pr
Bn
84
87
86
81
65
90
92
91
92
90
Supporting Information Available: Experimental procedures and
compound characterizations. This material is available free of charge
MeO2CCH2
a After column chromatography on silica gel. b Determined by chiral
phase HPLC.
References
(1) Review: Arend, M.; Westermann, B.; Risch, N. Angew. Chem., Int. Ed.
1998, 37, 1044.
The â-substituted γ-amino alcohols generated via the Mannich/
reduction sequence could be converted in a straightforward manner
to appropriately protected â2-amino acids, as illustrated in Scheme
2. Starting with 5.3 g of pentanal, 9.7 g of A, and 10 mol % of
(2) Reviews: (a) Cordova, A. Acc. Chem. Res. 2004, 37, 102. (b) Notz, W.;
Tanaka, F.; Barbas, C. F., III. Acc. Chem. Res. 2004, 37, 580. (c) List, B.
Acc. Chem. Res. 2004, 37, 548. Early studies: (d) List, B. J. Am. Chem.
Soc. 2000, 122, 9336. (e) List, B.; Porjalev, P.; Biller, W. T.; Martin, H.
J. J. Am. Chem. Soc. 2002, 124, 827. (f) Notz, W.; Sakthivel, K.; Bui, T.;
Zhong, G.; Barbas, C. F., III. Tetrahedron Lett. 2001, 42, 199. (g) Cordova,
A.; Notz, W.; Zhong, G.; Betancort, J. M.; Barbas, C. F., III. J. Am. Chem.
Soc. 2002, 124, 1842. Recent examples: (h) Mitsumori, S.; Zhang, H.;
Ha-Yeon Cheong, P.; Houk, K. N.; Tanaka, F.; Barbas, C. F., III. J. Am.
Chem. Soc. 2006, 128, 1040. (i) Taylor, M. S.; Tokunaga, N.; Jacobsen,
E. N. Angew. Chem., Int. Ed. 2005, 44, 6700. (j) Poulsen, T. B.; Alemparte,
C.; Saaby, S.; Bella, M. Jørgensen, K. A. Angew. Chem., Int. Ed. 2005,
44, 2896. (k) Lou, S.; Taoka, B. M.; Ting, A.; Schaus, S. E. J. Am. Chem.
Soc. 2005, 127, 11256.
Scheme 2. Concise Synthesis of Boc-â2-Homonorvaline
(3) Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. Chem. ReV. 2001, 101,
3219.
(4) Reviews: (a) Lelais, G.; Seebach, D. Biopolymers 2004, 76, 206. (b)
EnantioselectiVe Synthesis of â-Amino Acids, 2nd ed.; Juaristi, E.,
Soloshonok, V., Eds.; Wiley-VCH: New York, 2005.
(5) Cordova et al. reported formaldehyde-derived imine generated in situ with
aniline derivatives for aminomethylation of ketones catalyzed by proline,
but such a strategy is not applicable to aminomethylation of aldehydes.
See: (a) Ibrahem, I.; Casas, J.; Cordova, A. Angew. Chem., Int. Ed. 2004,
43, 6528. (b) Ibrahem, I.; Zou, W.; Casas, J.; Sunde´n, H.; Cordova, A.
Tetrahedron 2006, 62, 357. (c) Ibrahem, I.; Zou, W.; Engqvist, M.; Xu,
Y.; Cordova, A. Chem.sEur. J. 2005, 11, 7024.
catalyst F and recrystallizing the HCl salt of the γ-amino alcohol
gave a 72% yield of material with >98% ee. The benzyl groups
were removed and replaced by Boc in an efficient one-pot operation.
Jones oxidation12 then provided desired â2-amino acid product after
simple extraction, with >50% overall yield from A. The route is
short, and purifications are simple; therefore, this protocol is
amenable to large-scale synthesis.
We have described catalytic asymmetric Mannich reactions
involving a formaldehyde-derived iminium electrophile. Mechanistic
analysis of the proline-catalyzed versions suggests that non-H-
bonded ionic interactions can be used as a stereochemistry-
determining feature in organocatalytic reactions, although, in our
case, a more conventional steric repulsion strategy proved to be
more effective for achieving the desired goal. The new organo-
catalytic process constitutes the key step in an efficient synthesis
of â2-amino acids. This contribution is significant because â2-amino
acid residues are essential for the formation of certain â-peptide
secondary structures (12/10-helix, â3/â2 reverse turn).13 â-Peptides
containing â2-residues display useful biological activities, such as
mimicry of somatostatin signaling14 and inhibition of viral infec-
tion.15 To date, utilization â2-amino acid building blocks has been
limited by the cumbersome routes that are generally required to
prepare them.4 Few â2-amino acids are commercially available. In
contrast, many â3-amino acids (side chain adjacent to nitrogen) are
(6) Examples of using iminium precursors: (a) Hosomi, A.; Iijima, S.; Sakurai,
H. Tetrahedron Lett. 1982, 23, 547. (b) Enders, D.; Ward, D.; Adam, J.;
Raabe, G. Angew. Chem., Int. Ed. Engl. 1996, 35, 981. (c) Rehn, S.; Ofial,
A. R.; Mayr, H. Synthesis 2003, 1790.
(7) Chi, Y.; Gellman, S. H. Org. Lett. 2005, 7, 4253.
(8) Hydrogen bonding catalysis: (a) Taylor, M. S.; Jacobsen, E. N. Angew.
Chem., Int. Ed. 2006, 45, 1520. (b) Miller, S. J. Acc. Chem. Res. 2004,
37, 601. (c) Takemoto, Y. Org. Biomol. Chem. 2005, 3, 4299. (d) Pihko,
P. M. Angew. Chem., Int. Ed. 2004, 43, 2062. (e) Schreiner, P. R. Chem.
Soc. ReV. 2003, 32, 289. (f) Pihko, P. M. Angew. Chem., Int. Ed. 2004,
43, 2062. (g) Krattiger, P.; Kovasy, R.; Revell, J. D.; Ivan, S.; Wennemers,
H. Org. Lett. 2005, 7, 1101.
(9) Bahmanyar, S.; Houk, K. N. Org. Lett. 2003, 5, 1249 and ref 2b.
(10) See Supporting Information for details.
(11) (a) Marigo, M.; Fielenbach, D.; Braunton, A.; Kjaersgaard, A.; Jørgensen,
K. A. Angew. Chem., Int. Ed. 2005, 44, 3703. (b) Hayashi, Y.; Gotoh,
H.; Hayashi, T.; Shoji, M. Angew. Chem., Int. Ed. 2005, 44, 4212. (c)
Ibrahem, I.; Cordova, A. Chem. Commun. 2006, 1760.
(12) Oxidation of chiral R-substituted aldehydes and alcohols without epimer-
ization: Rangaishenvi, M. V.; Singaram, B.; Brown, H. C. J. Org. Chem.
1991, 56, 3286; and ref 7.
(13) (a) Hintermann, T.; Seebach, D. Synlett 1997, 437. (b) Seebach, D.; Abele,
S.; Gademann, K.; Jaun, B. Angew. Chem., Int. Ed. 1999, 38, 1595. (c)
Seebach, D.; Abele, S.; Gademann, K.; Jaun, B. Angew. Chem., Int. Ed.
1999, 38, 1595.
(14) Gademann, K.; Kimmerlin, T.; Hoyer, D.; Seebach, D. J. Med. Chem.
2001, 44, 2460.
(15) (a) English, E. P.; Chumanov, R. S.; Gellman, S. H.; Compton, T. J. Biol.
Chem. 2006, 281, 2661. (b) Also see: Stephens, O. M.; Kim, S.; Welch,
B. D.; Hodsdon, M. E.; Kay, M. S.; Schepartz, A. J. Am. Chem. Soc.
2005, 127, 13126.
(16) Guichard, G.; Abele, S.; Seebach, D. HelV. Chim. Acta 1998, 81, 187.
JA061731N
9
J. AM. CHEM. SOC. VOL. 128, NO. 21, 2006 6805