Page 5 of 6
Journal of the American Chemical Society
Chem. 2017, 9, 26−32. (b) Wu, Y.; Chen, Y.-Q.; Liu, T.; Martin, D. E.;
Corresponding Author
Yu, J.-Q. Pd-catalyzed γ‑C(sp3)−H arylation of free amines using a
transient directing group. J. Am. Chem. Soc. 2018, 140, 10363−10367. (c)
Li, B.; Seth, K.; Niu, B.; Pan, L.; Yang, H.; Ge, H. Transient-ligand-
enabled ortho-arylation of five-membered heterocycles: facile access
to mechanochromic materials. Angew. Chem., Int. Ed. 2018, 57,
3401−3405. (d) Li, B.; Lawrence, B.; Li, G.; Ge, H. Ligand-controlled
direct γ-C−H arylation of aldehydes. Angew. Chem., Int. Ed. 2020, 59,
3078−3082.
1
2
3
4
5
6
*yu200@scripps.edu
ORCID
Zhe Zhuang: 0000-0001-6679-0496
Jin-Quan Yu: 0000-0003-3560-5774
Notes
The authors declare no competing financial interests.
7
8
9
(11) (a) Lazareva, A.; Daugulis, O. Direct palladium-catalyzed ortho-
arylation of benzylamines. Org. Lett. 2006, 8, 5211−5213. (b) McNally,
A.; Haffemayer, B.; Collins, B. S. L.; Gaunt, M. J. Palladium-catalysed
C−H activation of aliphatic amines to give strained nitrogen
heterocycles. Nature 2014, 510, 129−133. (c) Calleja, J.; Pla, D.; Gorman,
T. W.; Domingo, V.; Haffemayer, B.; Gaunt, M. J. A steric tethering
approach enables palladium-catalysed C−H activation of primary
amino alcohols. Nat. Chem. 2015, 7, 1009−1016. (d) Chen, K.; Wang, D.;
Li, Z.-W.; Liu, Z.; Pan, F.; Zhang, Y.-F.; Shi, Z.-J. Palladium catalyzed
C(sp3)−H acetoxylation of aliphatic primary amines to γ-amino
alcohol derivatives. Org. Chem. Front. 2017, 4, 2097−2101.
(12) (a) Chen, G.; Gong, W.; Zhuang, Z.; Andrä, M. S.; Chen, Y.-Q.;
Hong, X.; Yang, Y.-F.; Liu, T.; Houk, K. N.; Yu, J.-Q. Ligand-accelerated
enantioselective methylene C(sp3)−H bond activation. Science 2016,
353, 1023−1027. (b) Wu, Q.-F.; Shen, P.-X.; He, J.; Wang, X.-B.; Zhang,
F.; Shao, Q.; Zhu, R.-Y.; Mapelli, C.; Qiao, J. X.; Poss, M. A.; Yu, J.-Q.
Formation of α-chiral centers by asymmetric β-C(sp3)−H arylation,
alkenylation, and alkynylation. Science 2017, 355, 499−503. (c) Xiao,
K.-J.; Lin, D. W.; Miura, M.; Zhu, R.-Y.; Gong, W.; Wasa, M.; Yu, J.-Q.
Palladium(II)-catalyzed enantioselective C(sp3)−H activation using a
chiral hydroxamic acid ligand. J. Am. Chem. Soc. 2014, 136, 8138−8142.
(13) Chan, K. S. L.; Fu, H.-Y.; Yu, J.-Q. Palladium(II)-catalyzed
highly enantioselective C−H arylation of cyclopropylmethylamines. J.
Am. Chem. Soc. 2015, 137, 2042−2046.
(14) Shao, Q.; Wu, Q.-F.; He, J.; Yu, J.-Q. Enantioselective γ-
C(sp3)−H activation of alkyl amines via Pd(II)/Pd(0) catalysis. J. Am.
Chem. Soc. 2018, 140, 5322−5325.
(15) Wang, H.; Tong, H. R.; He, G.; Chen, G. An enantioselective
bidentate auxiliary directed palladium-catalyzed benzylic C−H
arylation of amines using a BINOL phosphate ligand. Angew. Chem.,
Int. Ed. 2016, 55, 15387−15391.
(16) Rubin, M.; Rubina, M.; Gevorgyan, V. Transition metal
chemistry of cyclopropenes and cyclopropanes. Chem. Rev. 2007, 107,
3117−3179.
(17) Zhuang, Z.; Yu, C.-B.; Chen, G.; Wu, Q.-F.; Hsiao, Y.; Joe, C. L.;
Qiao, J. X.; Poss, M. A.; Yu, J.-Q. Ligand-enabled β-C(sp3)−H
olefination of free carboxylic acids. J. Am. Chem. Soc. 2018, 140,
10363−10367.
ACKNOWLEDGMENT
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
We gratefully acknowledge The Scripps Research Institute
and NIH (NIGMS, R01GM084019) for financial support. Z. Z.
thanks Alastair N. Herron for proofreading.
REFERENCES
(1) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Substrate-directable
chemical reactions. Chem. Rev. 1993, 93, 1307−1370.
(2) Katsuki, T.; Sharpless, K. B. The first practical method for
asymmetric epoxidation. J. Am. Chem. Soc. 1980, 102, 5974−5976.
(3) Noyori, R. Asymmetric catalysis: science and opportunities
(Nobel lecture). Angew. Chem., Int. Ed. 2002, 41, 2008−2022.
(4) Knowles, W. S. Asymmetric hydrogenations (Nobel lecture).
Angew. Chem., Int. Ed. 2002, 41, 1998−2007.
(5) For reviews, see: (a) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N;
Yu, J.-Q. Transition metal-catalyzed C−H activation reactions:
diastereoselectivity and enantioselectivity. Chem. Soc. Rev. 2009, 38,
3242−3272. (b) Newton, C. G.; Wang, S.-G.; Oliveira, C. C.; Cramer, N.
Catalytic enantioselective transformations involving C−H bond
cleavage by transition-metal complexes. Chem. Rev. 2017, 117,
8908−8976. (c) Shao, Q.; Wu, K.; Zhuang, Z.; Qian, S.; Yu, J.-Q. From
Pd(OAc)2 to chiral catalysts: the discovery and development of
bifunctional mono-N-protected amino acid ligands for diverse C−H
activation reactions. Acc. Chem. Res. 2020, 53, 833−851.
(6) (a) Shi, B.-F.; Zhang, Y.-H.; Lam, J. K.; Wang, D.-H.; Yu, J.-Q.
Pd(II)-catalyzed enantioselective C−H olefination of diphenylacetic
acids. J. Am. Chem. Soc. 2010, 132, 460−461. (b) Shen, P.-X.; Hu, L.;
Shao, Q.; Hong, K.; Yu, J.-Q. Pd(II)-catalyzed enantioselective
C(sp3)−H arylation of free carboxylic acids. J. Am. Chem. Soc. 2018, 140,
6545−6549. (c) Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.; Breazzano,
S. P.; Saunder, L. B.; Yu, J.-Q. Palladium-catalyzed methylation and
arylation of sp2 and sp3 C−H bonds in simple carboxylic acids. J. Am.
Chem. Soc. 2007, 129, 3510−3511. (d) Zhuang, Z.; Yu, J.-Q. Lactonization
as a general route to β-C(sp3)−H functionalization. Nature 2020, 577,
656−659.
(7) For reviews, see: (a) Daugulis, O.; Roane, J.; Tran, L. D.
Bidentate, monoanionic auxiliary-directed functionalization of
carbon−hydrogen bonds. Acc. Chem. Res. 2015, 48, 1053−1064. (b) He,
G.; Wang, B.; Nack, W. A.; Chen, G. Syntheses and transformations of
α-amino acids via palladium-catalyzed auxiliary directed sp3 C−H
Functionalization. Acc. Chem. Res. 2016, 49, 635−645.
(18) Chen, Y.-Q.; Wang, Z.; Wu, Y.; Wisniewski, S. R.; Qiao, J. X.;
Ewing, W. R.; Eastgate, M. D.; Yu, J.-Q. Overcoming the limitations of
γ- and δ-C−H arylation of amines through ligand development. J. Am.
Chem. Soc. 2018, 140, 17884−17894.
(19) (a) Wang, C.; Zhang, L.; Chen, C.; Han, J.; Yao, Y.; Zhao, Y.
Oxalyl amide assisted palladium-catalyzed synthesis of pyrrolidones
via carbonylation of γ-C(sp3)−H bonds of aliphatic amine substrates.
Chem. Sci. 2015, 6, 4610−4614. (b) Wang, P.-L.; Li, Y.; Wu, Y.; Li, C.;
Lan, Q.; Wang, X.-S. Pd-catalyzed C(sp3)−H carbonylation of
alkylamines: a powerful route to γ-lactams and γ-amino acids. Org.
Lett. 2015, 17, 3698−3701. (c) Hernando, E.; Villalva, J.; Martínez, Á. M.;
Alonso, I.; Rodríguez, N.; Arrayás, R. G.; Carretero, J. C. Palladium-
catalyzed carbonylative cyclization of amines via γ-C(sp3)−H
activation: late-stage diversification of amino acids and peptides. ACS
Catal. 2016, 6, 6868−6882.
(8) Ryabov, A. D. Mechanisms of intramolecular activation of C−H
bonds in transition-metal complexes. Chem. Rev. 1990, 90, 403−424.
(9) (a) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. Highly
regioselective arylation of sp3 C−H bonds catalyzed by palladium
acetate. J. Am. Chem. Soc. 2005, 127, 13154−13155. (b) He, G.; Chen, G.
A practical strategy for the structural diversification of aliphatic
scaffolds through the palladium-catalyzed picolinamide-directed
remote functionalization of unactivated C(sp3)−H Bonds. Angew.
Chem. Int. Ed. 2011, 50, 5192−5196. (c) Chan, K. S. L.; Wasa, M.; Chu,
L.; Laforteza, B. N.; Miura, M.; Yu, J.-Q. Ligand-enabled cross-
coupling of C(sp3)−H bonds with arylboron reagents via Pd(II)/Pd(0)
catalysis. Nat. Chem. 2014, 6, 146−150.
(20) Jiang, H.; He, J.; Liu, T.; Yu, J.-Q. Ligand-enabled γ‑C(sp3)−H
olefination of amines: en route to pyrrolidines. J. Am. Chem. Soc. 2016,
138, 2055−2059.
(10) (a) Liu, Y.; Ge, H. Site-selective C−H arylation of primary
aliphatic amines enabled by a catalytic transient directing group. Nat.
ACS Paragon Plus Environment